
Submitted to:
CREST 2018

c© I. Cristescu, W. Fontana & J. Krivine
This work is licensed under the
Creative Commons Attribution License.

Interactions between causal structures in
graph rewriting systems

Ioana Cristescu Walter Fontana
Department of Systems Biology, Harvard Medical School, Boston, USA

{ioana cristescu,walter fontana}@hms.harvard.edu

Jean Krivine
IRIF, Universite Paris 7, Paris, France

jean.krivine@irif.fr

Graph rewrite formalisms are a powerful approach to modeling complex molecular systems. They
capture the intrinsic concurrency of molecular interactions, thereby enabling a formal notion of mech-
anism (a partially ordered set of events) that explains how a system achieves a particular outcome
given a set of rewrite rules. It is then useful to verify whether the mechanisms that emerge from a
given model comply with empirical observations about their mutual interference. In this work, our
objective is to determine whether a specific event in the mechanism for achieving X prevents or pro-
motes the occurrence of a specific event in the mechanism for achieving Y. Such checks might also be
used to hypothesize rules that would bring model mechanisms in compliance with observations. We
define a rigorous framework for defining the concept of interference (positive or negative) between
mechanisms induced by a system of graph-rewrite rules and for establishing whether an asserted
influence can be realized given two mechanisms as an input.

1 Introduction

A persistent challenge across molecular biology is to understand how a multitude of diverse and asyn-
chronous interactions between molecular entities give rise to coherent system behavior. One difficulty
arises from the combinatorial complexity inherent in chemistry: A reaction (or interaction) between
structured entities, such as molecules, consists in the transformation of specific parts in a manner that
depends on a few rather than all aspects specifying the reactants. Combinatorial complexity then arises
because a given reactant combination can exhibit several distinct reactive patterns and the same pattern
can occur across many distinct reactant combinations. This idea generalizes beyond chemistry.

A molecular system can thus be described in terms of rewrite rules. In this way, rule-based modeling
tackles combinatorial complexity without succumbing to it because it only specifies rules of pattern
transformation and not the multitude of possible carriers of these patterns. Many physical systems can
be conveniently described as graphs. A rule-based approach then becomes a graph rewriting formalism
with a domain-specific execution model that determines the probability with which a rule fires at a
given time. The currently most developed approaches are the Kappa language [?, ?] and BNGL [?] for
molecular biology and Mød [?] for organic chemistry.

A rule formalizes the interaction between physical entities at some chosen level of abstraction. Pro-
cesses occurring below that level are abstracted away, yet not ignored: They inform what a rule should
say, but they are not explicitly represented by it. For instance, in organic chemistry, a rule of reaction be-
tween molecules expresses a local reconfiguration of bonds among atoms without explicitly representing
the underlying mechanism of electron pushing that engenders such reconfiguration. In molecular biol-
ogy, an interaction between proteins is typically expressed by asserting the conditions for a change of
protein state without representing the structural mechanisms enabling that change. In essence, a mecha-
nism below the chosen abstraction level becomes an axiomatic rule at the abstraction level [?].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Interactions between causal structures

Many observations of system behavior are assertions rather than rules. For example, an assertion
might claim that the activation of protein X inhibits the assembly of molecular machine Z. It is desirable
to determine whether and why an assertion holds in terms of the joint action among rules that represent
a particular system. This is tantamount to providing a mechanism that explains a given assertion at the
level of abstraction at which rules are defined.

The stochastic application of rules (a simulation) typically generates a long trace of state transi-
tions. A mechanism is a set of transitions that were jointly necessary in producing a specified outcome.
Mechanisms so-defined can be extracted from traces [?, ?] and abstracted into partial orders (posets) of
events1.

Here we propose a formal logic to express and verify a particular kind of assertion about a model
written in the Kappa language. We focus on assertions in which the occurrence of one event is claimed to
interfere with another event. Our approach takes as input two posets of events (i.e. mechanisms), which
might be hypothesized or abstracted from a simulation, and provides evidence whether the two posets
interfere with one another at the specified events. The key is that each poset builds up a context that is
required for its terminal event. These contexts can be reconstructed and checked for mutual consistency.
To lay the foundation for this approach requires setting up some formal machinery which occupies the
bulk of this paper.

A B1 1 A B1 12rAB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

Figure 1: A Kappa model.

Interaction between graph rewriting posets. The
graphs in Kappa consist of nodes, called agents,
meant to represent proteins. Agents are equipped
with sites through which they connect to one an-
other. A site represents a resource and hence can
bear at most one edge. Such graphs are called site-
graphs.

An event is the application of a rewrite rule to
a usually large graph representing the state of the
system. Events are partially ordered by a relation of precedence. Intuitively, an event e1 precedes an
event e2 if e1 contributes to establishing the context necessary for e2. Consider, for example, the simple
model in Figure 1 with the initial state consisting of nodes {A,B,C}, all unbound. Suppose furthermore
that the binding of agent X to A (rule rAX) and of agent Y to A (rule rAY) are two significant events eAX
and eAY, respectively. We wish to verify the assertion that either event inhibits the other. The assertion is
cast in terms of two mechanisms (posets) that could have been extracted from a simulation trace of this
model, one mechanism resulting in eAX, the other in eAY (Figure 2A).
A static inspection of rules rAX and rAY, underlying the events that are the subject of our query, shows
that both use the same site of A. This might suggest that the two events are in conflict and therefore
inhibit each other. This, however, is not a valid conclusion. Given the poset AX of Figure 2A, we can
reconstruct the context—specifically the site-graph GAX of Figure 2B—in which rule rAX fires. Note that
GAX specifies that site 2 of A must be unbound. Likewise, the firing of rule rAY is contingent upon context
GAY, which is built up by poset AY. GAY requires that site 2 of A be bound. These two contexts are in
conflict and thus cannot be realized at the same time. This means, in turn, that there is no inhibition at
this point between the two mechanisms: Whether a particular A gets bound to X or to Y is already decided
before the mechanisms reach the events whose relationship of inhibition we queried. As a whole, the
mechanisms AX and AY must interfere with one another negatively, as A cannot be bound to both X and

1In Ref.[?], a partially ordered set of events that account for an outcome was dubbed a “story”, which is akin to the biological
notion of a “pathway”.

I. Cristescu, W. Fontana & J. Krivine 3

rAY

rAC

rAC

rAX

rAB

Poset AX

Poset AY

?

A 32C 1AB 11 3

2

AB 11 3

2

C 1 free

GAX GAY

G

A B

Figure 2: Panel A: Two mechanisms (posets) and a query for conflict between the specified events. Black arrows are precedence; events are
labeled by the underlying rules. Panel B: The graph GAX represent the context in which the rule rAX is applied in the Poset AX. There is no
scenario in which the posets interact, since the graph G is not a site-graph. The site 3 of agent A has to be bound to an agent C and be free at the
same time, which is not representable in site-graphs.

Y at the same time; but the point of conflict is somewhere else. (It is between event rAB and rAY.) To
determine the earliest event combination at which two mechanisms conflict with one another can be done
by scanning all events of one against all events of the other.

A B1 1 A B1 12r’AB 2C 1 C 1

AB 11 3

2

C 1

G’

Figure 3: Rule r′AB replaces rule rAB. The graph G′ rep-
resent the context in which the rule rAX is applied in the
Poset AX . In this scenario, which coincides with graph
G′, there is an inhibition between the two posets AX and
AY .

If we change the model by replacing rule rAB with rule
r′AB (Figure 3), the context for the application of rule rAX
becomes consistent with the context of application of rule
rAY. This means both rules can fire. Since the firing of rAX
destroys part of the context needed by rAY (and vice versa),
the mechanisms inhibit each other at the events queried. In
sum, the key in determining whether two events in the scope
of distinct mechanisms are mutually exclusive consists in
reconstructing from the given mechanisms the context re-
quired for both events and determining whether it can be re-
alized. We call this critical context a “scenario”.

Related work. The notion of rule influence, introduced in Refs. [?, ?], is used to detect inhibition and
promotion between posets (Definition 18). Our approach to abstracting traces of state transitions into
partial orders is similar to Refs. [?, ?], but we use more fine-grained relations on graphs (the enablement
and prevention relations of Section 2.4). As a consequence, we do not need Petri nets as an interme-
diate encoding between state transitions and posets. In any case, our main focus is on reconstructing a
trace from a poset, which is obtained from a causal structure extracted from a Kappa simulation. This
extraction is the subject of Ref. [?] and outside the scope of this paper.

Outline. In Section 2 we introduce site-graphs, the graph rewriting framework of Kappa, and the notion
of rule influence. To define partial orders between events in a manner informed by rule influence, we need
to take a detour via the transition system induced by the rules (Section 2.4). In order to determine the
scenario that establishes enablement or prevention between posets, we need to reconstruct a trace from
a poset. To this end, in Section 3, we formalize trace reconstruction as the reverse of poset abstraction
from traces. In Section 4 we define a logic for expressing assertions on the posets provided as inputs.
We conclude in Section 5.

Length limitations preclude a description of our implementation, which can be found at https://
github.com/Kappa-Dev/PosetLogic. All constructions on site-graphs presented here can be adapted
to simple graphs.

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic

4 Interactions between causal structures

2 Graph rewriting and transition systems

2.1 Site-graphs

Let A be a set of agents, ranged over by a,b and K = {A,B, ..} be a set of agent types, equipped with a
map site : K→ N>0. The function type : A→ K assigns a type to each agent.

Definition 1 (Site-graph). A site-graph is a structure (A ,N ,E) where

• A ⊆ A is a set of agents;

• N ⊆A ×N>0]{free} is a set of nodes, with a special node free, and where each non-free node
is a pair (a, i) of an agent a ∈A and site i < site(type(a));

• E ⊆N ×N is a symmetric set of edges with the constraint that it is conflict-free: ∀(n1,n2),(n′1,n
′
2)∈

E , (n1 = n′1∧n2 = n′2) ∨ (n1 = n′2∧n2 = n′1) ∨ ({n1,n2}∩{n′1,n′2} ⊆ {free}).
Definition 2 (Morphism on site-graphs). A morphism f : G→ H, for G and H two site-graphs, is a pair
of functions f = (v,e) with

• v : AG → AH a function on agents that preserves types: type(v(a)) = type(a) and that can be
extended to a function on nodes: v(a, i) = (v(a), i) and v(free) = free, for all a ∈ AG and for all
i < site(type(a));

• and e : EG→ EH a function on edges such that for any two nodes n1,n2 ∈NG, if (n1,n2) ∈ EG then
e(n1,n2) = (v(n1),v(n2)).

Site-graphs and their morphisms form a category, denoted G . Morphisms in G preserve the node type
and the edge structure of nodes in site-graphs. Isomorphisms are denoted with∼=. A mono is a morphism

with injective functions on nodes and edges. We denote the empty graph with ε and write
→
f = 〈 f1, f2〉 for

the span G1
f1←G2

f2→G3. The same notation is used to denote the cospan G1
f1→G2

f2←G3. For simplicity,
we write f for v (or e) in f = (v,e). Finally, we write hom(G) and span(G) for the class of morphisms
and spans of G , respectively.

2.2 Graph rewriting

A rule-based model consists of graph-rewriting rules that are applied in a stochastic fashion to a typically
large graph representing the state of a system. In Kappa the stochastic application of rewrite rules follows
basic principles of stochastic chemical kinetics [?, ?]. Each graph-rewrite action constitutes a state
transition and a temporal sequence of such transitions is a trace. We also refer to the state of the system
as a “mixture”.

Definition 3 (Pushout). The pushout of a span
→
g is a cospan

→
f such that f1g1 = f2g2

2 and such that for

any other cospan
→
f ′ for which f ′1g1 = f ′2g2, there is a unique morphism M→M′ that makes diagram PO

below commute.

In the category of site-graphs, the pushout does not always exist. For a span
→
g of monos, if the

pushout exists, then it asserts a gluing of G1 and G2, resulting in M, based on the identifications (gluing
instructions) expressed by

→
g .

Definition 4 (Rule). A rule is a span of monos
→
r = L

p← K
q→ R such that for some a ∈ AK and i <

site(type(a)), if (a, i) ∈NK then
(
(q(a), i),n

)
∈ ER ⇐⇒

(
(p(a), i),n′

)
∈ EL, with n ∈NR and n′ ∈NL.

2We write f g(x) = f (g(x)), with x in the domain of g, for morphisms composition.

I. Cristescu, W. Fontana & J. Krivine 5

In site-graphs the site of an agent can be specified without specifying if the site is free or bound to
another site. Formally, in a site-graph G with an agent a ∈AG, we can have (a, i) ∈NG for which there
is no edge (n1,n2) ∈ EG such that n1 = (a, i) or n2 = (a, i). Rules however, need to satisfy a constraint
related to sites: if an edge exists for a site in either sides of a rule, then it exists in both sides.

Definition 5 (Double-pushout rewriting [?]). Let
→
r = L

p← K
q→ R be a rule. Let M be a site-graph

(typically a system state) and let m : L→M be a mono, called a matching. The double pushout rewriting
consists in defining the site-graph D, called the context graph, and the site-graph N such that the two

squares in diagram DPO are pushouts. We refer to the dpo rewrite of M to N as M
m,
→
r⇒ N and denote the

state transition associated with the application of rule
→
r = 〈p,q〉 at ”location” m of the system state M

(i.e. the mixture) as mix(M
m,
→
r⇒ N) = M←D→N.

PO:

M′

O

G1 G2

M

g1 g2

f1 f2
f ′1 f ′2

DPO:

L K R

M D N

p q
m

Given the definition above, a context graph D need not always exist. We use dpo rewriting for the
sake of simplicity, but our work extends to other graph rewriting techniques.

2.3 Influence

The postcondition resulting from the application of a rule
→
r1 can satisfy or, more generally, contribute

(in conjunction with other rules) to satisfying the precondition for the application of another rule
→
r2.

Alternatively,
→
r1 might destroy the precondition of

→
r2. In the former case we speak of a positive influence

of
→
r1 on

→
r2 and, in the latter case, of a negative influence. Of course, a rule may also have no influence

on a particular other rule.
Influence3 belongs to the realm of possibility: it is a latent relation between rules that becomes

manifest as a relation between events (i.e. actual rule applications) in the specific context of a trace, as
we discuss formally in Section 3.

We next define two categorical concepts needed for capturing influence. Multisums are meant to
characterize all possible ways of gluing together two graphs G1 and G2.
Definition 6 (Multisum in the subcategory of monos [?]). Let G1 and G2 be two graphs. The multisum

of G1 and G2, denoted with multisum(G1,G2), is a family of cospans of monos
→
fi = 〈 f1,i, f2,i〉, with

f j,i : G j → Mi, i ≤ n, j ∈ {1,2}, such that for any other cospan of monos
→
f ′, with f ′j : G j → M′, there

exists an Mk, k ≤ n and a unique mono Mk → M′ that makes diagram MS below commute. Moreover,
for any monos Mk→M′ and Mi→M′, i,k ≤ n, for which diagram MS commutes, we have Mk ∼= Mi.

Unlike other constructions, which are defined in G , multisums are defined in the subcategory of G
whose morphisms are restricted to monos. Multisums always exists in this subcategory.

Definition 7 (Pullback). The pullback of the cospan
→
f consists of a span

→
g such that f1g1 = f2g2. In

addition, for any other span
→
g′ such that f1g′1 = f2g′2, there is a unique morphism O′ → O that makes

diagram PB commute.
3Positive and negative influence were referred to as activation, inhibition or overlaps in Refs.[?, Section 3.4],[?, Section

4.2.3][?].

6 Interactions between causal structures

MS:

G1 G2

M1 · · ·Mk · · · Mn

M′

f ′1 f ′2
PB:

O

G1 G2

M

O′

g1 g2

f1 f2

g′1 g′2

The pullback always exists in G . Using these notions we can define influence.

Definition 8 (Positive influence [?]). Given two rules
→
r1 = L1←K1

i→ R1 and
→
r2 = L2←K2→R2, consider

an overlap between R1 and L2, i.e. a cospan
→
f ∈ multisum(R1,L2), and let

→
g be the pullback of

→
f .

Moreover, let
→
h be the pullback of 〈i,g1〉. The rule

→
r1 has a positive influence on rule

→
r2, if h2 is not an

iso. In other words, if O is not contained in P and, thus, in K1. The influence is induced by the overlap
→
g

corresponding to
→
f and is denoted by

→
r1

+
→
g−−→ →

r2.

P

K1 O

M

R1L1 L2

K2

R2

h1 h2

i
g1 g2

f1 f2The diagram on the right depicts the relationships
used in Definition 8. The rule

→
r1 has a positive influence

on
→
r2 if it creates a subgraph of L2. By requiring h2 not

to be an iso, we assert that O is not already present in
L1 and must, therefore, be produced by

→
r1. Negative

influence
→
r1
−→g−−→ →

r2 is defined analogously, but with
→
g

now the pullback of a cospan
→
f ∈ multisum(L1,L2) between the left hand sides:

→
r1 has a negative

influence on
→
r2, if it destroys a subgraph of L2.

Example 1. The rule
→
r1 has a positive

influence on
→
r2, because

→
r1 produces an

agent B needed for a subsequent applica-
tion of

→
r2 shown in Figure 4. Similarly

→
r2 has a negative influence on

→
r1 since it

erases an agent A needed by
→
r1.

A A B A B B

A BA

BA B

L1 R1 L2 R2

M

O

f1 f2

g1 g2

r1 r2

Figure 4: Positive influence between two rules. For simplicity, sites are omitted.

2.4 Transition systems

Following Refs. [?, ?] we introduce the notion of transition system (TS) on state graphs and an indepen-
dence relation between transitions. We then propose new relations of enablement and prevention between
transitions, based on the notions of rule influence just defined, and connect them to independence.

Definition 9 (TS on graphs [?]). A transition system T S = (Q,R,T) on graphs consists of:

• a set of states Q⊆ G , where each state is a graph;

• a set of rules R;

• a set of labeled transitions T ⊆ Q× hom(G)×R×Q, where each transition t is a dpo rewriting

step M
m,
→
r⇒ N with M, N ∈ Q, an underlying rule

→
r : L← K → R ∈ R, and a matching m : L→

M ∈ hom(G).

I. Cristescu, W. Fontana & J. Krivine 7

Transitions can be composed t1; t2 if the source state of t2 matches the destination state of t1. A trace
θ is a (possibly empty) sequence of composable transitions: θ = t1; t2; · · · ; tn.

Definition 10 (Independence relation on transitions [?]). Let t1 : M
m1,
→
r1⇒ M1, t2 : M1

m2,
→
r2⇒ M2 and t3 :

M
m3,
→
r3⇒ M3 be transitions with underlying rules

→
ri = Li←Ki→Ri ∈ R, i ∈ {1,2,3} and corresponding

matchings mi as indicated in the diagrams below.
sequential independence t1 and t2 are sequentially independent, written t13seqt2, iff there exist mor-

phisms i : R1→ D2 and j : L2→ D1 such that f2i = n1 and g1 j = m2.

parallel independence t1 and t3 are parallel independent, written t13part3, iff there exist morphisms
i : L1→ D3 and j : L3→ D1 such that f3i = m1 and f1 j = m3.

R1

M1

L2

D1

K1

D2

K2L1

M

R2

M2

sequential independence

g1 f2

m2n1m1

L1

M

L3

D1

K1

D3

K3R1

M1

R3

M3

parallel independence

f1 f3

m3m1

In the following, we use the function mix (of Definition 5) to chain transitions by span composition

(see diagrams below). Given two spans
→
f = 〈 f1, f2〉 and

→
g = 〈g1,g2〉, we define their composition as

→
g
→
f = 〈 f1h1,g2h2〉 where

→
h is the pullback of 〈 f2,g1〉. A partial morphism f : M1 ⇀ M3 is a total

morphism from the subgraph dom(f) of M1 to M3, that is f : M1 ⊇ dom(f)→M3. Given a span M1
l←

D r→M3, its corresponding partial morphism, denoted M1 ⇀M3, is defined on l(D) as l−1r and undefined
otherwise [?].

M1 D1 M2 D2 M3

D

f1 f2 g1 g2

h1 h2 M1 M3D
l r

Definition 11 (Causality). Let t1 : M1
m1,
→
r1⇒ N1 and t2 : M2

m2,
→
r2⇒ N2 be two transitions bracketing a trace

θ : t1; t ′1; t ′2; · · · ; t ′n; t2. The rules inducing ti, i ∈ {1,2}, are
→
ri = Li←Ki→Ri with matchings mi ∈ hom(G)

into M1 and M2, respectively.

enablement Let
→
g be a span such that

→
r1

+
→
g−−→ →

r2. If the diagram below on the left commutes then t1
enables t2, denoted t1 <θ t2. In the diagram below on the left, the partial morphism N1 ⇀ M2 is
obtained from the composition of mix(t ′1)◦ · · · ◦mix(t ′n).

prevention Let
→
g be a span such that

→
r2
−→g−−→ →

r1. If the diagram below on the right commutes then t2
prevents t1, denoted t2 aθ t1. In the diagram below on the right the partial morphism M1 ⇀ M2 is
the composition of mix(t1)◦mix(t ′1)◦ · · · ◦mix(t ′n).

O

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

enablement

g1 g2 O

M1 M2

L1 L2

prevention

g1
g2

8 Interactions between causal structures

To make the underlying span explicit, we sometimes write (t1, t2,
→
g) ∈<θ and (t1, t2,

→
g) ∈aθ .

A2C 1

A2C 1 A B1 12C 1

m1,r1 m2,r2

r1 r2

m1 m2

m3,r3

r3

m3

m4,r4

r4

A 42C 1 D1

A 42C 1 D1

A B1 12C 1 B 1 A 42 D1

B 1 A 42 D1

m4

A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41 A
2

C 1

B 1

D 1

41

Figure 5: Transition t2 binds agents A and D, needed by transition t4. Transition t3 needs to happens between the two, as it (i) binds agents A
and B as needed by t4 and (ii) unbind A from C which was necessary for t2.

Example 2. Consider the trace of Figure 5. The first transition enables the second and third transitions.
The second transition enables the last transition. However, it is a “delayed” enabler: it partially fulfills
the precondition of the last transition, but the third transition has to happen before. Note that such type
of causality is not captured by the graph rewriting framework of [?, ?, ?]4. Lastly note that the third
transition is a preventer for the second one.

3 Posets of graph rewriting events

In this section we abstract a trace into a poset of events, and concretize a poset back into a set of traces.
Each transition becomes an event in a poset with the underlying rule as its label. Similarly, in the
concretization, each event in a poset corresponds to a transition such that transitions compose into a
trace. The abstraction is used to reduce the number of simulation traces to a small set of posets, and the
concretization recomputes a “representative” trace from each poset. Concretized traces are used in the
next section.

3.1 From traces to posets

A transition t (Definition 5) is a pair of spans—mix(t) = M← D→ N and the underlying rule
→
r : L←

K → R—and a matching m : L→ M. When abstracting a trace into a partial order, we drop the span
mix(t) and m. The enabling and prevention relations between transitions in a trace (Section 2.4) translate
into a partial order on events, labeled by the underlying rules.

We proceed in two steps. Enabling and prevention between transitions hinge on positive and negative
influence between the underlying rules (see Definition 11). Recall that when transition t enables transi-

tion t ′ within a trace θ there exists a span
→
f for which (t, t ′,

→
f) ∈<θ . The first abstraction, A1, forgets

the matching and the span mix(t) of a transition t, but preserves enablement and prevention relations
between transitions and the positive and negative influence between the underlying rules.

Definition 12 (Abstraction step 1). Let θ = t1; t2; · · · ; tn be a trace and E = {e1,e2, · · · ,en}5 be a set of

events. Events are labeled using a function ` : E →R such that `(ei) = ri if ti : Mi
mi,
→
ri⇒ Ni, for i≤ n. We

then define two relations · +·−→ ·, · −·−→ ·⊆ E×E× span(G):

4For immediate transitions, enablement and prevention coincide with the sequential dependence and critical pairs, respec-
tively, of Refs. [?, ?, ?]. See the appendix for more details.

5We can define a function id : T → N from transitions to natural numbers such that id(ti) = i. The set of events is then
E = {1,2, · · ·n}.

I. Cristescu, W. Fontana & J. Krivine 9

ei
+
→
f−−→ e j ⇐⇒ (ti, t j,

→
f) ∈<θ and ei

−
→
f−−→ e j ⇐⇒ (ti, t j,

→
f) ∈aθ ,

for ei,e j ∈ E, i, j≤ n and
→
f ∈ span(G). We denote this first abstraction of θ with A1(θ) = (E, `, +−→,

−−→).

The notation e
+
→
f−−→ e′, for some span

→
f , overloads the notation `(e)

+
→
f−−→ `(e′). Keep in mind, however,

that the first is defined on events whereas the second can be inferred from the rules on which it holds (see
Definition 8).

In the second abstraction step, A2, we map the relations +−→ and −−→ to corresponding partial orders
on events. This step simply forgets the spans responsible for the enablement and prevention relations on
transitions.

Definition 13 (Abstraction step 2). Let E be a set of events equipped with a labeling function ` : E→R

and two relations · +·−→ ·, · −·−→ ·⊆ E×E× span(G). We translate the relations on events from Definition
12 into two new relations <,
⊆ E×E:

ei < e j ⇐⇒ ei
+
→
f−−→ e j and ei
 e j ⇐⇒ e j

−
→
f−−→ ei.

The associated poset is defined as A2(E, `,
+−→,

−−→) = (E, `,≤,`), where ≤ and ` are the transitive and
reflexive closure of < and
, respectively. We call the two relations ≤ and `, (enabling) precedence and
non-enabling precedence, respectively6.

Lemma 1. Let θ be a trace and let e,e′ ∈ E be two events with A2A1(θ) = (E, `,≤,`). If e < e′ then

there exists a span
→
f such that `(e)

+
→
f−−→ `(e′). Similarly, if e
 e′, then there exists a span

→
f ∈ span(G)

such that `(e′)
−
→
f−−→ `(e).

A morphism on posets is a function on events that preserves labels and the two precedence relations.
An isomorphism between two posets s1 and s2 is denoted by s1 ∼= s2. For a set of traces Θ = {θ1, · · · ,θn},
we write S = (s1, · · · ,sk)/∼= with k ≤ n for the set of posets obtained via A2A1 and quotiented by iso.

Example 3. Consider the trace θ = t1; t2; t3; t4 of Example 2. The corresponding poset consists of the
events {e1,e2,e3,e4} with the relations <= {(e1,e2);(e1,e3); (e2,e4);(e3,e4)} and
= {(e2,e3)}. Note
that e2 is a non-enabling precedent of e3, as in the original trace transition t3 prevents transition t2.

3.2 From posets to traces

We next specify the concretization from posets to traces. Again, we proceed in two steps. The first
concretization retrieves the intermediate structure (E, `, +−→,

−−→) from a poset (E, `,≤,`). This step re-
covers the influence (positive or negative) between the rules underlying two events that are in a particular
precedence or non-enabling precedence relation.

Definition 14 (Concretization step 1). Let (E, `,≤,`) be a poset. We define the relations +−→,
−−→⊆

E×E× span(G) as follows:

• ei
+
→
f−−→ e j ⇐⇒ `(ei)

+
→
f−−→ `(e j) and ei < e j, for some

→
f ∈ span(G);

• ei
−
→
f−−→ e j ⇐⇒ `(ei)

−
→
f−−→ `(e j) and e j
 ei, for some

→
f ∈ span(G)

6In order to not introduce unnecessary terminology, we abuse the term poset to mean the structure (E, `,≤,`) where the
set of events E is equipped with two partial orders. We could instead define (E, `,(< ∪
)?) but in this case we forget the
distinction between < and
.

10 Interactions between causal structures

where < and
 are the reduced relation of ≤ and `, respectively. The concretization of a poset is then
C1(E, `,≤,`) = (E, `, +−→,

−−→).

Example 4. Consider a poset of events e1,e2 and e3 with labels
→
r1,
→
r2 and

→
r3, respectively, as shown in

Figure 6. Furthermore, suppose that events e1 and e2 both precede e3. For the pair e1 < e3, one can infer

the positive influence
→
r1

+
→
f−−→ →

r3. For the pair e2 < e3, we need to consider two possibilities: either

r1
A

A B
r3

r2

A B

A B

A

A

B

3 23 2

31

2

31

2

12

3

3

2

!
f

!
g

!
h

e3

e1
e2

Figure 6: All possible influences between three rules.

→
r2

+
→
g−−→ →

r3 or
→
r2

+
→
h−−→ →

r3. The relation induced by the span
→
g is problematic. Intuitively, the events e1 and

e2 should produce a distinct set of agents for event e3. Specifically, both cannot produce the same agent
A that binds to B in e3. The consistent span attributes the creation of agent A to e1 and the creation of
B to e2 (in addition to a further A not used in e3). In this manner, both e1 and e2 are necessary for the
occurence of e3.

As the example indicates, it is not trivial to retrieve the influence between events from the influence
between rules. The problem is that influence between events is a global property of the poset, whereas
influence between rules is local to the two rules. Lack of space prevents us from characterizing the
correct concretizations of a poset. Informally, a concretization of a poset s is correct if (i) every relation
on events in s is due to a shared resource (i.e. an agent or an edge) and if (ii) every resource in s is
consistent throughout s.

The second concretization maps events into transitions such that: (i) the transitions compose into
a valid trace and (ii) the relations defined on the events hold on the transitions of the trace. We call a
candidate for concretization any function from events to transitions that satisfies condition (i).

Definition 15. Let E be a set of events with a labeling function ` : E →R and a total order on events

<⊆E×E. A function concrete : E→ T is called a candidate for concretization if concrete(e) =M
m,
→
r⇒ N

such that `(e) =
→
r , for some graphs M,N, and a morphism m. Moreover concrete(e1); · · · ;concrete(en),

with ei < ei+1, i≤ n, compose into a trace.

Any such function must also satisfy condition (ii), as in the following definition.

Definition 16 (Concretization step 2). Let E be a set of events equipped with a function ` : E →R and
two relations · +·−→ ·, · −·−→ ·⊆ E×E× span(G). Let < be a total order on events and let concrete : E→ T
be a function from events to transitions such that the following hold:

• (ti, t j,
→
f) ∈<θ ⇐⇒ ei

+
→
f−−→ e j and

• (ti, t j,
→
f) ∈aθ ⇐⇒ ei

−
→
f−−→ e j

for ei,e j ∈ E, i, j ≤ n. Then the concretized trace is C2(E, `,
+−→,

−−→,concrete,<) = concrete(e1); · · · ;
concrete(en), for ei < ei+1, i≤ n.

I. Cristescu, W. Fontana & J. Krivine 11

For (E, `,≤,a) a poset, we write C (E, `,≤,a) for the set of all possible concretisations, i.e. the set
of all traces θ as specified by C1(E, `,≤,a) and C2(E, `,

+−→,
−−→,concrete,<). We write (θ ,concrete) ∈

C (E, `,≤,a) for the concretization function used in reconstructing a particular θ .

Theorem 1. Let θ be a trace. Then θ ∈ C A2A1(θ). Moreover, for any trace θ ′ ∈ C A2A1(θ),
A2A1(θ)∼= A2A1(θ

′).

4 A logic on posets

x ::=xe | xs (variables on events and posets)
ts ::=xs | s (terms on posets)
te ::=xe | e (terms on events)
t ::=ts | te (terms)

ϕ ::=∃x.ϕ(x) | ∀x.ϕ(x) | (quantifiers)
¬ϕ | ϕ1∧ϕ2 | (logical connectors)

te ∈ ts | `(te) =
→
r | te

1 ≤ts te
2 | te

1 `ts te
2

| te
1 ∈ ts

1
−
; te

2 ∈ ts
2 | te

1 ∈ ts
1

+
; te

2 ∈ ts
2 (predicates)

Figure 7: The grammar of the poset logic.

In Figure 7 we define a fragment of a first
order logic that can be used to express asser-
tions about positive and negative influence
between mechanisms, that is, posets. We
interpret the logic on the set of posets S ,
ranged over by s, and on the set of events
E = ∪si∈SEsi , where Esi is the set of events
in si. To distinguish between the partial or-
ders of different posets in S , we write s =
(Es,≤s,`s, `s). In the following, x stands
for variables, t for terms and the superscripts
e and s indicate whether the variables and
terms range over events or posets, respec-
tively. Formulas are denoted by ϕ and are built from predicates on variables and terms.

A valuation for ϕ is a function v : fv(ϕ)→ E]S from the set of free variables of ϕ to the set of
events and posets. The evaluation of ϕ is defined below and requires a valuation function v for the set
of free variables of ϕ; the evaluation is therefore parametric on v. We use two functions, one to evaluate
terms {}v : t→ E]S and one to evaluate formulas [[]]v : ϕ→{T,F}. A formula ϕ is satisfiable if there
exists v such that [[ϕ]]v evaluates to true. The interpretation of formulas and terms is shown in Figure 8.

[[∀xs.ϕ]]v ⇐⇒ for all s ∈S , [[ϕ(s/x)]]v
[[∃xs.ϕ]]v ⇐⇒ for some s ∈S , [[ϕ(s/x)]]v
[[¬ϕ]]v = ¬[[ϕ]]v

[[ϕ1∧ϕ2]]v = [[ϕ1]]v∧ [[ϕ2]]v

[[te ∈ ts]]v ⇐⇒ {te}v ∈ {ts}v

[[`(te) =
→
r]]v ⇐⇒ `({te}v) =

→
r

[[te
1 ≤ts te

2]]v ⇐⇒ e1 ≤s e2 where e1 = {te
1}v,e2 = {te

2}v,s = {ts}v

[[te
1 `ts te

2]]v ⇐⇒ e1 `s e2 where e1 = {te
1}v,e2 = {te

2}v,s = {ts}v

[[te
1 ∈ ts

1
+/−
; te

2 ∈ ts
2]]v ⇐⇒ e1 ∈ s1

+/−
; e2 ∈ s2 where e1 = {te

1}v,e2 = {te
2}v,

s1 = {ts
1}v,s2 = {ts

2}v

{x}v = v(x)

{e}v = e

{s}v = s

Figure 8: The intepretation of the poset logic.

12 Interactions between causal structures

Example 5. We return to the introductory example. The mechanisms of binding an agent A to an agent
X or to an agent Y consist in the application of rule

→
rAX and

→
rAY, respectively. The assertion that the first

mechanism prevents (or conflicts with) the second is written as ∃e1.(e1 ∈ s1∧ `(e1) =
→

rAX)∧∃e2.(e2 ∈
s2∧ `(e2) =

→
rAY)∧ e1 ∈ s1

−
; e2 ∈ s2. The logic allows us to formulate more complex mechanisms. For

our example, we can write ∃e.e ∈ s∧ `(e) = →
rAX∨ `(e) =

→
rAY for a mechanism that produces A bound to

either X or Y.

The predicates e1 ∈ s1
+
; e2 ∈ s2 and e1 ∈ s1

−
; e2 ∈ s2 check for enablement and prevention between

two posets. Informally, e1 and e2 represent the ”meeting point” of the two posets s1 and s2. We use these
events to reconstruct a graph that represents a context in which s1 enables or prevents s2.

The causal past of an event is the set of events that preceded it. We denote with [e]s the causal past
of an event e ∈ Es and define [e]s = (E ′,≤′,`′, `′) with E ′ = {e′ : e′ ∈ E,e′ ≤ e} and≤′,`′, `′ defined like
≤,`, ` but restricted to E ′.

Definition 17 (Occurrence context of an event in a poset). Let s be a poset and let e ∈ Es be an event.
Furthermore, let (θ ,concrete) ∈ C ([e]s) be a concretization of [e]s. We say that a morphism m is an

occurrence context of e in s if concrete(e) = M
m,`(e)⇒ N, for some graphs M,N.

O

M

L1 L2

M1 M2

m1 m2

f1 f2

g1 g2

The occurrence context of e1 in s1 and of e2 in s2 is specified by match-
ings m1 : L1→M1 and m2 : L2→M2, respectively. The diagram on the right
illustrates the prevention of s2 by s1. Since the graph M contains both M1
and M2, both events e1 and e2 can occur in that context. We then say that M
is a scenario for the prevention of s2 by s1, which is induced by a negative

influence between the underlying rules, `(e1)
−
→
f−−→ `(e2). The scenario graph

M is formally defined as follows.

Definition 18 (Scenario for prevention). Let mi be an occurrence context of event ei in the poset si,

i∈ {1,2}. Let
→
f be a span such that `(e1)

−
→
f−−→ `(e2). Define the span

→
g = 〈g1,g2〉 as gi = mi fi, i∈ {1,2}.

We say that the graph M obtained by the pushout
→
g is a scenario (graph) for the prevention of e2 ∈ s2 by

e1 ∈ s1.

Example 6. Let L1, L2 be the left hand sides of rules rAX and rAY from Figure 2. We have a negative
influence between the rules rAX and rAY induced by the agent A. The occurence context of eAX in the
poset AX is obtained from the concretization of the poset AX and consists of the morphism L1→ GAX.
Similarly the occurence context of eAY in the poset AY is L2→GAY. There is no scenario for prevention
as the graph G (in Figure 2) is not a site-graph.

In a similar manner we interpret the enabling relation between two mechanisms. The predicate

(e1 ∈ s1
+/−
; e2 ∈ s2) returns true if there exists a scenario M as defined above. The pushout does not

always exists and, in consequence, mechanisms do not always interact with one another.
The logic is implemented as a systematic inspection of each poset. The set of posets does not have

in itself a structure, and therefore there is no smart strategy for deciding whether a formula holds. The
point of the logic is to give a formal language and an interpretation for influence between posets.

Example 7. Let us look at a Kappa model slightly more complicated than the one in the Introduction.
We give the rules in the figure below. The two posets build up the graphs GAX and GAY. Then there are
two “resources” which can produce an inhibition between the two posets. They produce two scenario
graphs for inhibition G1 and G2, shown in Figure 9.

I. Cristescu, W. Fontana & J. Krivine 13

A B1 1 A B1 12r’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

rAC

rAY

rAC

rAX

rBCr’AB

Poset AX

Poset AY

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

A 321

AB 11 2

C2

2

C1

3

G 1 G 2

Figure 9: A Kappa model for which there are two scenarios for the prevention between the events labeled rAX and rAY.

A B1 1 A B1 12r’’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

G 2

2 2 2

2

Figure 10: A slightly different Kappa model for which only one of the scenarios is still valid.

Let us change rule r′AB into r′′AB and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of agent C to be free. In this case only one scenario for inhibition can
still occur, shown in Figure 10.

5 Conclusions

Given a categorical notion of graph rewrite system, we defined positive and negative influence between
rules. This allowed us to define sequential and parallel independence between state transitions and the
relations of enablement and prevention. These were then lifted to the poset abstraction of a trace of
state transitions, where they became enabling and non-enabling precedence relations within a poset. The
formulation of a logic on posets then allows us to formulate questions about enablement and prevention
relations between posets. We ended by specifying how the concretization of posets back into a trace pro-
vides a scenario graph that establishes the truth (or falsity) of a statement about poset interaction. These
notions, together with their implementation, are meant to assist a modeler in checking the consistency
between observations and the mechanisms that are implied by a rule-based model.

Acknowledgements. We gratefully acknowledge illuminating discussions with Russ Harmer, Jerome
Feret, and Jonathan Laurent. Special thanks to Pierre Boutillier for his help in developing and integrating
the model checker resulting from this contribution into the Kappa software framework.

14 Interactions between causal structures

A Appendix

In this appendix we present the proofs missing in our presentation as well as providing more examples
and remarks.

A.1 Another Example

Let us look at a Kappa model slightly more complicated than the one in the Introduction. We give
the rules in the figure below. The two posets build up the graphs GAX and GAY. Then there are two
“resources” which can produce an inhibition between the two posets. They produce two scenario graphs
for inhibition G1 and G2, shown below.

A B1 1 A B1 12r’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

rAC

rAY

rAC

rAX

rBCr’AB

Poset AX

Poset AY

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

A 321

AB 11 2

C2

2

C1

3

G 1 G 2

Let us change rule r′AB into r′′AB and keep everything else the same. With the new rule the graph build
up by Poset AX requires the site 2 of agent C to be free. In this case only one scenario for inhibition can
still occur, shown below.

A B1 1 A B1 12r’’AB 2C 1 C 1

A2rAC C 1 A2C 1

rAX AB 11 3 AB 11 3 X1

A 32rAY C 1 A 32C 1 Y1

rBC C2B 2 C2B 2

C2

2
C2

2

AB 11 2

C2

2

C1

3

GAX GAYA 32C 1

AB 11 2

C2

2

C1

3

G 2

2 2 2

2

A.2 Proofs of Section 2.1

Lemma 2. Site-graphs and their morphisms form a category.

Proof. The category of site-graphs has as objects the site-graphs of 1 and as arrows the morphisms of 2.
Let us show morphisms compose. Given three site-graphs G1,G2,G3 and two morphisms f : G1→ G2,
g : G2→ G3 let h = g f be the (pairwise) composition of the two. It follows

• for an agent a ∈AG1 , type(h(a)) = g(f (type(a)) and we have that type(h(a)) = h(type(a));

• for a node (a, i) ∈NG1 , h(a, i) = g(f (a)), i)) and therefore h(a, i) = (g(f (a)), i) = (h(a), i); h triv-
ially preserves the free node;

I. Cristescu, W. Fontana & J. Krivine 15

• for an edge (n1,n2) ∈ EG1 , h(n1,n2) = (g(f (n1),g(f (n2)), hence h preserves edges.

If f and g are injective, then so is h. The axioms of associativity and identity law easily hold.

A.3 Examples of Section 2.3

Example 8 (Of no pushout in site-graphs). In the figure below, the pushout of the span below is not a
site-graph: there is a conflict on site 2 of agent B.

B C1 3A 3 2 B C1 32

B 1 C3

C 3

Example 9 (Rules). The good rule at the right binds agents A and B to one
another. Note that we do not need to specify all sites of the
agents A and B. The sites that are specified are preconditions
for the application of the rule, that is the rule only applies on
agents A with the sites 2 and 3 free and on agents B with site 2
free.

BA 3 2BA 3 2 C3 1

2

2 2

BA 3 2BA 3 22 C3 1

good rule

bad rule
Note that is site 2 of agent A is mentioned on the left hand side, it also needs to appear in the right

hand side. This is expressed in condition of the Definition 4. So, for example the bad rule on the right
does not satisfy this condition.

A.4 Proofs and examples of Section 2.2

In Ref. [?] there are two conditions that need to hold for the dpo rewriting of Definition 5. One of the two
condition is the dangling condition defined below. The second one (called the identification condition)
always holds in our setting because we only consider monos in the dpo rewriting.

Property 1 (Dangling conditions). Let
→
r = L

p← K
q→ R be a rule and let L m→ M be a matching in a

graph M. Define the gluing points and dangling points as subsets of the nodes in NL, as follows:

GP = p(NK)

DP = {n ∈NL : ∃l ∈ EM \m(EL) s.t.

l = (m(n),) or l = (,m(n))}. L K R

M D N

p q

f g

m

Then we say that the dangling condition holds if DP ⊆ GP.

In this work, we only consider rule applications for which the dangling conditions hold. In the
following lemma we show that there exists a unique D such that L→M←D is the pushout of the span
L← K→D. Note that the condition on rules (of Definition 4) is needed for the following result.

Lemma 3. Let L l← K r→ R be a rule and let M be a site-graph and let m : L→M be a matching. The
DPO rewriting can be applied whenever the dangling conditions hold.

Proof.
We first define a pushout in a “constructive” manner. Then
we construct the graph D and show that M is the pushout of
the span 〈k, l〉. Lastly, we construct N and show that it is the
pushout of the span 〈k,r〉. L K R

M D N

l r

f g

m k u

16 Interactions between causal structures

1. Let R r←K k→D be a span. We define≡⊆NR×ND to be the smallest

equivalence relation with (k(n),r(n)) ∈≡, for all n ∈NK . We define the
graph N to be the following graph:

• NN = (ND∪NR)|≡
• AN = {a : a ∈ n,n ∈NN}
• EN = {(n1,n2) : n1,n2 ∈NN

if n1,n2 ∈ image(r) then [r−(n1),r−(n2)] ∈ ER or
if n1,n2 ∈ image(k) then [k−(n1),k−(n2)] ∈ EK}

N′

K

R D

N

r k

u gu′ g′
h

The pushout in the category of site-graphs does not always exists. When the pushout does not
exists, then the graph N is not a site-graph, i.e. there is a conflict in EN . We show that if N is a site-
graph then it is the pushout. For that, we have to show that the graph N has the universal property:
for any site-graph N′ and two morphisms g′ : D→ N′ and u′ : R→ N′ such that the diagram above
commutes, there exists a unique morphism h : N→ N′ such that the diagram above commutes. Let
the morphism h : N→ N′ be as follows:

h(a) =u′(u−(a)) = g′(g−(a)) if a ∈ image(u)∩ image(g)

u′(u−(a)) if a ∈ image(u)

g′(g−(a)) if a ∈ image(g)

h(n1,n2) =u′(u−(n1,n2)) =

g′(g−(n1,n2)) if (n1,n2) ∈ image(u)∩ image(g)

u′(u−(n1,n2)) if (n1,n2) ∈ image(u)

g′(g−(n1,n2)) if (n1,n2) ∈ image(g)

The morphism preserves agent types which follows from the composition of morphisms and from
the fact the diagram commutes for the morphisms u′ and g′. For a node (a, i) ∈NN , suppose that
(a, i) ∈ image(u)∩ image(g). It follows that (u′(u−(a)), i) = (g′(g−(a)), i) ∈N ′

N . Therefore h also
preserves nodes.

The morphism h is also unique. It follows from the fact that any agent or edge in N is also either in
graph R or in graph D. Therefore for the diagram to commute, there is only one possible mapping
for any agent or edge from R (or D) into N′.

2. The graph D is defined as a subgraph of M as follows:

• ND = NM \m(NL)∪m(l(NK))

• ED = EM \m(EL)∪m(l(EK))

• AD = {a : a ∈ n,n ∈ND}
It is a site-graph, as it is a subgraph of M. The morphism f : D→ M is defined as the inclusion
morphism. The morphism k : K→ D is defined as k = lm restricted to the subgraph D of M.

I. Cristescu, W. Fontana & J. Krivine 17

Let us now show that the cospan 〈 f ,m〉 is the pushout of the span 〈l,k〉. For that, we show that M
can be obtained as in the first item of the proof from the graphs D and L.

By manipulating the definition of the set ND we obtain

ND \m(l(NK))∪m(NL) = NM

which is equivalent to first merging sets ND and m(NL) and then define an equivalence class on
nodes such that (m(l(n)),k(n)) ∈≡, for all n ∈NK . Therefore NM = (ND∪m(NL))|≡. We can
make a similar argument to show that the edges of M can be obtained as in the construction above,
from the edges of graphs L and D.

3. Let N be the graph constructed in the first item of this proof. Suffices then to show that N is
a site-graph, i.e. we have to show that EN is conflict free. Suppose by contradiction that there
exists

(
(a, i),(b, j)

)
∈ ED and

(
(a, i),(c, j)

)
∈ ER such that (a, i) ∈NK . We have then that both(

(a, i),(b, j)
)

and
(
(a, i),(c, j)

)
are edges in N, which are conflicting.

From the Definition 4 of a rule, there exists n ∈NL such that
(
(a, i),n

)
∈ EL. As m : L→M is a

mono,
(
(m(a), i),m(n)

)
∈ EM. From the construction of D above it follows that there is no n′ ∈ND

such that ((a, i),n′) ∈ ED. Contradiction.

A.5 Proofs and examples of Section 2.3

Example 10 (Multisum). For two site-graphs G1 and G2, the site-graphs obtained from the multisum are
the top four site-graphs in the diagram below.

BA 3 2 BA C 31 1 1

BA 3 2

BC 3

1

1 1

BA C 31 1 1

A 3

2
BA 3 2

C 31

1 1

G 1 G 2

BA 3 2

BA C 31 1 1

In each of the graph of the multisum, the overlapping of G1 and G2 is highlighted by a square, i.e. the
two graphs overlap on agents A,B, on either A or B or do not overlap.

Example 11 (Negative influence between rules). In the figure below, we have two rules rA.B,rABC written
as spans. The rule rA.B has a negative influence on rule rABC as it unbinds agent A from agent B. Formally,
this is expressed by the span 〈g1,g2〉 obtained by pullback from 〈 f1, f2〉 ∈multisum(L1,L2).

BA 3 2 BA 3 2

BA

BA 3 2 C13 BA 3 2 C13

BA 3 2 CBA 3 2

BA 3 2 C13

rA.B rABC

g1
g2

f1 f2

Lemma 4. The pullback always exists in G .

Proof.

18 Interactions between causal structures

Let G1, G2, M be two site-graphs and
→
f be a cospan as shown

on the right. We define a site-graph O as a subgraph of M (and
is therefore a site-graph), which projects into G1 and G2. The

span
→
g is given by a restriction on the inverse of

→
f . Lastly we

show the universal property.

O

G1 G2

M

O′

g1 g2

f1 f2

g′1 g′2

Let AO = f1(A1)∩ f2(A2) ⊆ AM be a set of agents. We have that the maps g1 = f−1 (AO) and
g2 = f−2 (AO) are well defined functions on the agents AO. Let NO = {(a, i) : (a, i) ∈NM,a ∈ AO}∪
{free} ⊆NM be a set of nodes. Finally, let EO = {(n1,n2) : (n1,n2) ∈ EM,n1,n2 ∈NO} be a set of edges
which is by construction symmetric and conflict free. Then O= (AO,NO,EO) is a site-graph, included in
M. The maps g1, g2 are defined on nodes and edges as expected and are morphisms in G by construction.

Let A ′ be the set of agents of a site-graph O′ and let
→
g′ be a span such that the diagram above

commutes. Then define h : O′→O a map such that h(a′) = a ⇐⇒ f1(g′1(a
′)) = a, for a′ ∈A ′. The map

extends to nodes and edges of O′. Moreover, h is the unique morphism that commutes, which follows by
contradiction.

Lemma 5. Let G1← O→ G2 be the pullback of the cospan G1→M← G2 ∈multisum(G1,G2). Then,
G1→M← G2 is the pushout of G1← O→ G2.

Proof. First, we have to show that M′ is a site-graph, where the span G1← O→ G2 is the pullback of
a cospan G1 → M← G2 and G1 → M′← G2 is the pushout of G1 ← O→ G2. If M′ is obtained from
the pushout, then there exists a unique mono M′→M. Therefore, from the Definition 2 of morphism, if
there is a conflict in M′ then there is a conflict in M as well.
Secondly, let us show the hypothesis. Let us suppose by contradic-
tion, that the cospan G1 → M ← G2 is not the pushout of the span
G1 ← O→ G2. We denote the pushout as the cospan G1 → P← G2.
From the definition of the pushout we have that there exists a unique
morphism m : P→M for which the diagram on the right commutes.

M′′

O

G1 G2

M P
m

Let us distinguish between two cases:

• G1→ P← G2 /∈ multisum(G1,G2). If the pushout is not in the multisum, then there exists M′ ∈
multisum(G1,G2) such that there exists a morphism m′ : M′→ P. But then there exists a morphism
mm′ : M′→M. However as both M,M′ are in the multisum, then M ∼= M′ and, hence M ∼= P.

• G1 → P← G2 ∈ multisum(G1,G2). Then let us denote with M′′ the pushout-object of the span
M← O→ P. It follows that both M and P embed into M′′. From the definition of the multisum, it
follows that M ∼= P.

Let us note that the Lemma above is used in the definition of influence between rules in Ref.[?].

A.6 Proofs of Section 3

Lemma 6. Let θ be a trace and let e,e′ ∈ E be two events with A1(θ) = (E, `, +−→,
−−→). If e

+
→
f−−→ e′ then

`(e)
+
→
f−−→ `(e′), for some

→
f ∈ span(G) (and similarly for negative influence).

I. Cristescu, W. Fontana & J. Krivine 19

Proof. Let θ be a trace such that A1(θ) = (E, `, +−→,
−−→). For the two events e1,e2 in E and a cospan

f such that e
+
→
f−−→ e′, there exists two transitions t1, t2 ∈ θ such that t1 : M1

m1,r1⇒ N1 and t2 : M2
m2,r2⇒ N2,

for some graphs Mi,Ni, morphisms mi and the underlying rules
→
ri = Li←Ki→Ri, i ∈ {1,2}. Moreover,

from the Definition 12 it follows that (t1, t2,
→
f) ∈<θ and `(ei) = ri, i ∈ {1,2}. From the Definition 11 it

follows that r1
+
→
f−−→ r2.

Proof of Lemma 1. Let θ be a trace, let A1(θ)= (E, `, +−→,
−−→) be the intermediate structure and A2(E, `,

+−→
,
−−→) = (E, `,≤,`) be a poset. Let e,e′ ∈ E be two events such that e < e′. Then from the Definition 13,

it follows e
+
→
f−−→ e′, for some span

→
f . From Lemma 6, then we have that `(e)

+
→
f−−→ `(e′).

The proof is similar for the non causal precedence.

Schematically, the abstractions and concretisations of Definitions 12,13,14,16 are represented as
follows:

(E, `,≤,`)(E, `, +−→,
−−→)(θ : t1; t2; · · · tn,<,a)

A1 A2

C1C2

Example 12 (The two-steps abstraction: Example 3 revisited). Let us consider the trace θ = t1; t2; t3; t4
of example 2. The first abstraction constructs the structure (E, `, +−→,

−−→). Let
→
f ,
→
g ,
→
h ,
→
i ,
→
j ∈ span(G)

be the spans shown in the figure below:

A2C 1 A2C 1 A 42C 1 A 42C 1 A

B

1

1

2C 1 A

B

1

1

2C 1 B 1 A 42 B 1 A 42

D 1 D 1 D 1 D 1

A2C 1

A2C 1 A 4 D1

A2C 1

A B1 1

f1

f2 g1 g2
h1 h2

i1
i2

j1 j2

Then the relations +−→,
−−→ are defined as follows:

e1
+
→
f−−→ e2 e1

+
→
g−−→ e3 e2

+
→
h−−→ e4 e3

+
→
i−−→ e4 e3

−
→
j−−→ e2.

The second abstraction removes the spans in the relations +−→,
−−→. At the end we obtain the structure

(E, `,<,
) with <= {(e1,e2);(e1,e3);(e2,e4);(e3,e4)} and
= {(e2;e3)}.
Example 13 (The two-steps concretisation: Example 4 revisited). Consider a poset of events e1,e2 and
e3 with labels

→
r1,
→
r2 and

→
r3, as in Example 4. The first concretisation step, as we have argued, retrieves

the structure (E, `, +−→,
−−→) with the relation +−→ defined as follows:

e1
+
→
f−−→ e2 e2

+
→
h−−→ e3

and −−→= /0.
The second concretisation step needs a function concrete. For our example the following works:

20 Interactions between causal structures

concrete(e1) = concrete(e2) = concrete(e3) =

A 31

2

m1,r1

r1

m1

"

" A 31

2

m2,r2

m2

A 31

2

A B31

2

12

A B31

2

12

r2

"

A 31

2

A B

A B3 2

3 2

r3

A B31

2

12

m3,r3

A 31

2

A B31

2

12

A 31

2

m3

Providing an implementation for the function f is outside the scope of this paper and we leave
it as future work. For the case of Kappa, an implementation is available at https://github.com/
Kappa-Dev/PosetLogic.

Example 14 (More coarse-grained abstractions). Recall that for the trace θ of example 2 our abstraction
constructs the poset s of the example 3. Note that there are other abstractions possible from a causal
trace. For example, one can also forget the prevention relations between events and retrieve “regular”
posets, i.e. sets of events equipped with only one partial order, the precedence relation.

In Example 2 if we forget prevention on trace θ , we obtain the same set of events {e1,e2,e3,e4}) but
equipped with only the precedence relation <= {(e1,e2);(e1,e3);(e2,e4);(e3,e4)}. From this poset we
can concretise a trace in which event e3 occurs before event e2, which is not possible in our concretisation.

Another possible abstraction consists of remembering the direct precedence instead of the indirect
one. In this case we do not detect that event e2 is a precedent for event e4.

None of these abstractions are “wrong” in any sense, but do not keep as much information about the
original trace as the abstraction we defined. Our choice is motivated by the application to Kappa, where
the indirect enablement and prevention are deemed important.

Proof of theorem 1. Suffices to show that for any trace θ there exists a concretisation function for the
poset A2A1(θ) such that the constraints in Definitions 16,14 hold. It follows from the Definitions 12,13
of abstractions.

Consider now a trace θ ′ ∈C A2A1(θ). Both traces θ and θ ′ meet the constraints in Definitions 16,14.
It follows that A2A1(θ)∼= A2A1(θ

′) using the Definitions 12,13.

A.7 Independence, enablement and prevention in graph rewriting

In this section we revisit the graph rewriting theory from Ref. [?] adapted to site-graphs.
The next Lemma asserts that when t13part2, we can construct a t ′1 and t ′2 to sequentialize either way,

t1; t ′2 or t2; t ′1, with the same net effect. Likewise, when t13seqt2, we can find a t ′1 and t ′2 to swap the order
from t1; t2 into t ′2; t ′1 with, again, the same net effect. The Lemma is a variant of a result from Ref. [?]
adapted to site-graphs.

Lemma 7 (Permutation of independent transitions). Consider two transitions t1 : M
m1,r1⇒ M1 and t2 :

M
m2,r2⇒ M2. If t13part2 then there exists an M′ ∈ Q and two transitions t ′2 : M1

m′2,r2⇒ M′ and t ′1 : M2
m′1,r1⇒ M′

for some matchings m′2,m
′
1 ∈ hom(G). Moreover, t13seqt ′2 (and t23seqt ′1).

Consider two transitions t1 : M
m1,r1⇒ M1 and t2 : M1

m2,r2⇒ M2. If t13seqt2 then there exists an M′ ∈ Q

and two transitions t ′2 : M
m′2,r2⇒ M′ and t ′1 : M′

m′1,r1⇒ M2 for some matchings m′2,m
′
1 ∈ hom(G). Moreover,

t13part ′2.

https://github.com/Kappa-Dev/PosetLogic
https://github.com/Kappa-Dev/PosetLogic

I. Cristescu, W. Fontana & J. Krivine 21

Proof. From the Definition 10 of parallel independence we have that if t13part2 then there exists two

transitions t ′2 : M1
m′2,r2⇒ M′1 and t ′1 : M2

m′1,r1⇒ M′2 for some matchings m′2,m
′
1 ∈ hom(G). We have to show

that M′1 ∼= M′2. For this we show that the parts of M modified by r1 and the parts modified by r2 are
disjoint and therefore the order in which they occur does not matter.

We fix some notations. We write n1 : R1→M1, n2 : R2→M2, n′1 : R1→M′2 and n′2 : R1→M′1. Let us
also denote A ′

1 ⊆AM the set of agents deleted by the application of r1 and A ′′
1 ⊆AM1 the set of agents

created by r1. We use similar notations for A ′
2 ⊆AM, A ′′

2 ⊆AM2 .
Then we have that

AM1 = AM \A ′
1 ∪A ′′

1

and similarly for M2:

AM2 = AM \A ′
2 ∪A ′′

2

The sets A ′
1 and A ′

2 are disjoint, as the transitions are independent. It implies that m′2(m
−
2 (A

′
2)) ∈AM1

and similarly for n′2(n
−
2 (A

′′
2)) ∈AM′1

the agents created by r2. Therefore

AM′1
= AM1 \m′2(m

−
2 (A

′
2))∪n′2(n

−
2 (A

′′
2))

= AM \
(
A ′

1 ∪m′2(m
−
2 (A

′
2))

)
∪
(
A ′′

1 ∪n′2(n
−
2 (A

′′
2))

)
.

and similarly,

AM′2
= AM2 \m′1(m

−
1 (A

′
1))∪n′1(n

−
1 (A

′′
2))

= AM \
(
A ′

2 ∪m′1(m
−
1 (A

′
1))

)
∪
(
A ′′

2 ∪n′1(n
−
1 (A

′′
1))

)
.

From the Definition 10 of parallel independence we have that there exists the bijections

f1 : A ′
1 → m′1(m

−
1 (A

′
1)); f2 : A ′

2 → m′2(m
−
2 (A

′
2));

g1 : A ′′
1 → n′1(n

−
1 (A

′′
1)); g2 : A ′′

2 → n′2(n
−
2 (A

′′
2)).

Therefore the we can define a bijection h : AM′1
→AM′2

between the agents of M′1 and the agents of M′2
as follows

h = id\
(

f1∪ f2
)
∪
(
g1∪g2

)
,

where id is the identity function on the agents of M. As it is obtained from operations on morphisms, the
bijection h preserves agent types and nodes. Similarly we proceed to construct the bijection between the
egdes of M′1 and M′2. We obtain a isomorphism between the site-graph M′1 and M′2.

In a similar fashion we can prove the second part of this lemma.

22 Interactions between causal structures

Example 15 (Parallel and sequential indepen-
dence). In the figure on the right we have two
sequential transitions that we denote with t1 :
M1

m1,rAB⇒ M2 and t2 : M2
m2,rAC⇒ M3. The two

transitions are sequential independent: there
exists m′2 a morphism from the left hand side of
rAC to M1 such that m′2mix(t1) = m2. Thanks
to Lemma 7 we can also rewrite transition t2
into a transition t ′2 : M1

m′2,rAC⇒ M′2 as shown in
the figure below. Transitions t1 and t ′2 be-
come then parallel independent. Lastly, note
that in the figure, we can also rewrite t1 into

t ′1 : M′2
m′1,rAB⇒ M3, with t ′2 and t ′1 sequential inde-

pendent.

BA 3 2

C
1

1

BA 3 2

C
1

1

BA 3 2

C
1

1

m1,rAB m2,rAC

BA 3 2

BA 3 2

A C1 1

A C1 1

rAB rAC

m1 m2
m’2

BA 3 2

C
1

1

BA 3 2

C
1

1

m1,rAB

m2,rAC

BA 3 2

C
1

1

m’2,rAC

BA 3 2

C1

m’1,rAB
1

Let us now revisit the Definition 11 of enablement and prevention.

O

M

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

direct enablement

g1 g2

f1 f2

h1 h2

O

M1 D1 N1 N2D2M2

R1K1L1 L2 K2 R2

indirect enablement

g1 g2

Definition 19 (Direct and indirect enablement). Let t1 : M1
m1,r1⇒ N1 and t2 : M2

m2,r2⇒ N2 be two transi-
tions bracketing a trace θ : t1; t ′1; t ′2; · · · t ′n; t2. The rules inducing ti, i ∈ {1,2}, are

→
ri = Li←Ki→Ri with

matchings mi ∈ hom(G) into M1 and M2, respectively. The span N1 ← D→ M2 is the composition of
mix(t ′1)◦ · · · ◦mix(t ′n).

direct enablement Let
→
g be a span such that

→
r1

+
→
g−−→→

r2 and such that
→
g is the pullback of

→
f ∈multisum(R1,L2).

If there exists a span
→
h such that the diagram below on the left commutes then t1 directly enables

t2, denoted t1 ≺ t2.

indirect enablement Let
→
g be a span such that

→
r1

+
→
g−−→ →

r2. If the diagram below on the right commutes
then t1 indirectly enables t2, denoted t1 < t2.

The notion of direct enablement is useful in the characterization of non-independent transitions (see
Lemmas 8, 10). However, as we suggested in the example 2, indirect enablement captures more depen-
dencies between transitions.

Example 16 (Example 2 revisited). Transition t1 is a direct enabler of t2 and t3. Transition t2 is an
indirect enabler for t4.

Definition 20 (Direct and indirect prevention). Consider two transitions t1 : M1
m1,r1⇒ N1 and t2 : M2

m2,r2⇒ N2
in a trace θ : t1; t ′1 : t ′2; · · · t ′n; t2. The rules inducing ti, i ∈ {1,2}, are

→
ri = Li←Ki→Ri with matchings

mi ∈ hom(G) into M1 and M2, respectively. The span M1 ← D→ M2 is the composition of mix(t1) ◦
mix(t ′1)◦ · · · ◦mix(t ′n).

I. Cristescu, W. Fontana & J. Krivine 23

direct prevention Let
→
g be a span such that

→
r2
−→g−−→→

r1 and such that
→
g is the pullback of

→
f ∈multisum(L1,L2).

If there exists a span
→
h such that the diagram below on the left commutes then t2 directly prevents

t1, denoted t2 �t1.

indirect prevention Let
→
g be a span such that

→
r2
−→g−−→ →

r1. If the diagram below on the right commutes
then t2 indirectly prevents t1, denoted t2 a t1.

O

M

M1 M2

L1 L2

D

direct prevention

g1
g2

f1 f2

h1 h2

O

M1 M2

L1 L2

D

indirect prevention

g1
g2

Note that t1 ≺ t2 =⇒ t1 < t2 and t1 �t2 =⇒ t1 a t2, but not the reverse.
We next relate enablement and prevention to non-independence. First we show that when restricting

our definitions to the case of consecutive transitions, enablement and prevention are included in the
negation of sequential and parallel independence.

Lemma 8. Consider two sequential transitions t1 : M
m1,r1⇒ M1 and t2 : M1

m2,r2⇒ M2 and let g1 be the
morphism D1 → M1, where D1 is the context graph of t1. Transition t1 direct enables transition t2 iff
there exists no morphism j : L2→ D1 such that g1 j = m2.

Lemma 9. Consider two parallel transitions t1 : M
m1,r1⇒ M1 and t2 : M

m2,r2⇒ M2 and let f1 be the morphism
D1→M, where D1 is the context graph of t1. Transition t1 is directly prevents transition t2 iff there is no
morphism j : L2→ D1 such that f1 j = m2.

Lastly, the following two Lemmas assert that two non-independent transitions are either in an en-
abling relation or they can be rewritten as preventing transitions.

Lemma 10. Consider two sequential transitions t1 : M
m1,r1⇒ M1 and t2 : M1

m2,r2⇒ M2. Let f1 and g1 be the
morphisms D1 → M and D1 → M1, respectively, where D1 is the context graph of t1. If the sequential
transitions t1 and t2 are not independent, then either (i) t1 < t2 or (ii) there exists a morphism j : L2→M

such that g1 j = m2; and there exists a graph M′2 and a transition t ′2 : M
f1 j,r2⇒ M′2 with t ′2 �t1.

Lemma 11. If two parallel transitions t1 and t2 are not parallel independent then either t1 �t2 or t2 �t1
(or both).

A.7.1 Proofs of Appendix subsection A.7

Proof of Lemma 8.
Let us first make an observation. For the two rules r1 and r2, where
we have the morphisms R1 → M1 and L2 → M1, there exists a unique
R1 → M ← L2 ∈ multisum(R1,L2) that make the diagram on the right
commutes (from Definition 6). The pullback of R1 → M1 ← L2 is the
same as the pullback of R1→M← L2, which follows from Lemma 5.

R1

M1

M

L2

We depict the two transitions in the figure below. Let R1 ← O→ L2 be the pullback of the cospan
R1→M1← L2 and let K1← P→ O be the pullback of K1→ R1← O. We proceed by showing that in
the diagram below

24 Interactions between causal structures

R1

M1

L2

D1

K1

D2

K2L1

M

R2

M2

O

P

k1

g1

m2
j

p

o
p′

the mono p : P→ O is an iso iff there exists a morphism j : L2→ D1 such that g1 j = m2. Let us denote
o : O→ L2 the morphism between O and L2 and o′ : O→ R1 be the morphism between O and R1.

• Suppose that p : P→ O is an iso. We denote p′ : O→ K1 the composition of p and P→ K1. We
define j : L2→ D1 as follows

j(a) =k1(p′(o−(a))) for a ∈ image(o)(AO)

g−1 (m2(a)) for a ∈AL2 \ image(o)(AO)

j((a, i)) =(j(a), i) for a node (a, i) ∈NL2

j([n1,n2]) =[j(n1), j(n2)] for an edge [n1,n2] ∈ EL2 .

In what follows we show that j is (i) well defined on agents; (ii) preserves nodes and edges; (iii) is
a mono.
Let o(O) = L′2 ⊆ L2 be the image of o : O→ L2. For any agent a in L′2, we have that j(a) =
k1(p′(o−(a))). The function o− : L′2→ O is not necessarily a morphism, as it might not preserve
nodes and the edges between nodes. It is however a function well defined on agents, which follows
from o being a mono. Moreover, for any node or edge in L′2, o− preserves them into O.
Consider now x an agent, a node or an edge in L2 such that x /∈ L′2. We have that R1← O→ L2 is
the pullback of R1→M1← L2 and therefore, if x ∈ L2, x /∈ image(o)(O) then m2(x) ∈M1, which
we denote xM. We also have that there exists no xR ∈ R1, xR ∈ image(o′)(O), that maps into xM.
We have that D1→M1← R1 is the pushout of D1← K1→ R1. For xM ∈M1 and not in R1 we have
that there exists xD ∈ D1 such that g1(xD) = xM. Therefore we can define j(x) = g−1 (m2(x)), for
all x ∈ L2 \ image(o). This proves (i) and (ii).
The function j satisfies (iii) as any agent, node or edge in graph L2 is either in L′2 or in L2 \L′2.

• Let us now show that if there exists j : L2→ D1 such that g1 j = m2 then the morphism p : P→ O
is an iso.
For any x (agent, node or edge) in O we have that there exists xL ∈ L2 such that o(xL) = x and
similarly for xR ∈ R1, o′(x) = xR. As O is the pullback, both xL and xR map into the same xM ∈M1.
Also, m2(xL) = g1(j(xL)) and therefore there exists xD ∈D1 such that j(xL) = xD and g1(xD) = xM.
The span D1→M1← R1 is the pushout of D1← K1→ R1 and there exists xD ∈ D1, xR ∈ R1 that
map into xM. It implies that there exists xk ∈ K1 such that xk maps into xD and xR.
The span K1← P→O is the pullback of K1← R1→O and there exists xk ∈ K1, xO ∈O1 that map
into xR. Therefore there exists xP ∈ P such that p(xP) = x for all nodes or edges x ∈ O. It implies
that p is surjective.
As p is both surjective and injective (by definition) we conclude that p is indeed an iso.

I. Cristescu, W. Fontana & J. Krivine 25

Proof of Lemma 9. This proof is similar to the one of Lemma 8.

Proof of Lemma 10. If M
m1,r1⇒ M1 and M1

m2,r2⇒ M2 are not sequentially independent, from Definition 10,
it follows two possible cases:

• there is no morphism j : L2 → D1 such that g1 j = m2. From Lemma 8, in this case t1 < t2. We
have proved then case (i) from the hypothesis.

• there is no morphism i : R1 → D2 such that f2i = n1, but there exists the morphism j : L2 → D1

such that g1 j = m2. It implies, from Lemma 7 that there exists M′ ∈Q and t ′2 : M
m′2,r2⇒ M′, for some

morphism m′2 such that t1 with is not parallel independent of t ′2.

From the Definition 10 of parallel independence if t1 and t ′2 are not parallel independent it follows
that there is no morphism i′ : L1→ D2 such that f2i′ = n1. Then by Lemma 9, we conclude that
t ′2 �t1.

Proof of Lemma 11. It follows from Definition 10 and Lemma 9.

A.8 On the implementation

In the implementation we use two simpliying assumptions, that holds for stories generated by KaSim:

• Let θ be a trace. For all Mi mixtures of θ , for all agents a ∈ Mi, there exists a transition of θ

M j
m,r⇒M j+1, with

→
r = L← K→ R, such that a /∈AL and a ∈AR.

• Let
→
r = L← K→ R be a rule. For any a ∈AR, if a /∈ q(NK) then ∀i < site(type(a)), (a, i) ∈NR

and ∃n ∈NR such that ((a, i),n) ∈ ER.

The first condition, informally, asks that any agent used at some point in a trace has an “introductory”
rule, i.e. a rule that creates the agent. The second condition requires that the agents created by a rule are
fully specified, i.e. all sites are involved in an edge.

These two assumptions simplify the implementation of the concretisation function, but do not have
an impact on the theoretical development presented in the main text.

A correct concretisation, as mentioned in the main text, correct concretisations are cumbersome to
define. Here we give two conditions that have to hold, the rest being similar.

Definition 21 (Valid poset). A poset s = (E, +−→,
−−→, `) is valid if it is directed w.r.t. the transitive and

reflexive closure of +−→ and if the following constraints are meet:

no influence is empty Let e1,e2 ∈ s be two events. If e1
+
→
f−−→ e2 or e1

−
→
f−−→ e2 then

→
f is not empty;

constraints on the influence between rules for positive meets Let e1,e2,e3 be three events in s such

that there exists
→
f = R1 ← O1 → L3 and

→
g = R2 ← O2 → L3 two spans with e1

+
→
f−−→ e3 and

e2
+
→
g−−→ e3. Let O1 ← O→ O2 be the pullback of the span O1 → L3 ← O2. Then one of the

following holds:

26 Interactions between causal structures

• either there exists the morphisms O→ K1 and O→ K2 that commute in the diagram below

O

L3

O1 O2

R1 R2L1 L2

K1 K2

• or there exists the morphism O→ K1 but no morphism O→ K2 that commutes. Then there

exists
→
f ′ : R2← O′→ L1, with O⊆ O′ for which e2

+
→
f ′−−→ e1.

. . .

We call a resource any non empty site-graph that appears in one but not both sides of a rule, as
for instance an agent or an edge. A correct concretisation is consistent w.r.t. all resources used in the
concretised trace.

In the definition above a resource is modeled as a span. The first condition says that if there is a
relation between two events in a poset, then necessarily they have a non-empty shared resource. The
second condition checks that whenever an event e3 shares the same resource with two other events e1
and e2, then the two events also share the resource.

	Introduction
	Graph rewriting and transition systems
	Site-graphs
	Graph rewriting
	Influence
	Transition systems

	Posets of graph rewriting events
	From traces to posets
	From posets to traces

	A logic on posets
	Conclusions
	Appendix
	Another Example
	Proofs of Section 2.1
	Examples of Section 2.3
	Proofs and examples of Section 2.2
	Proofs and examples of Section 2.3
	Proofs of Section 3
	Independence, enablement and prevention in graph rewriting
	Proofs of Appendix subsection ??

	On the implementation

