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1 Energy loss in vascular networks

In the following three sections, we summarize the hydrodynamic reasoning that provides the
formal background to various Assumptions gathered in section 2.1 of the main text, in particular
the area-preserving and area-increasing constraints, equations (3) and (4), as well as the
proportionality of blood volume and body mass. As we repeatedly emphasize, this material is not
novel. Our intent is to provide a concise and rigorous summary of the WBE theory that is
scattered across the literature.

1.1 Minimization of energy loss to dissipation

1.1.1 Lagrange multiplier calculation

Assumption 6 of West, Brown, and Enquist (WBE) posits that natural selection has minimized
the energy required for pumping blood through the vascular network. The benefit, presumably, is
to free up as much energy as possible for other actions that might affect fitness, such as foraging,
growth, and reproduction [1, 2]. In this section, we focus on minimizing power lost to dissipation
that results from friction between blood and vessel walls. Friction becomes important when a
large proportion of the blood is in contact with vessels walls. This dominant form of energy loss
in small vessels. Specifically, we wish to minimize the power lost to dissipation by flowing blood
through a network that is

(i) of fixed size

(ii) contained within the body volume, and

(iii) space-filling, as defined in Assumption 5 of the main text.

Without these requirements, the calculation would merely end up revealing that power is
minimized either by not pumping the blood at all or by letting vessel radii become infinite - in
either case the friction is zero.

In the subsequent calculation, power loss does not vary with time. Minimizing power loss is,
therefore, the same as minimizing energy loss - the work needed to pump blood for some fixed
amount of time. Owing to requirement (i), the calculation minimizes energy loss for any organism
of fixed size. Although this will constrain the architecture of a network, it does not yet connect
organisms of different body masses. For this we need to establish a connection between network
size or volume (i.e., blood volume) and body mass, which we shall do in section 1.1.2.

The power lost in the cardiovascular system to dissipation is given by P = Q̇2
0Znet, where Q̇0 is

the volume flow rate of blood and Znet is the total impedance (resistance) to blood flow in the
network. To minimize the power loss subject to constraints (i)-(iii), we use the method of
Lagrange multipliers [3]. The objective function is given by

P = Q̇2
0Znet + λVblood + λMM +

N∑
k=0

λkn
kl3k, (1)
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where the last three terms represent the requirements (i), (ii), and (iii), in this order [1, 2]. Each
constraint appears with a corresponding Lagrange multiplier: λ, λM , and λk, k = 1, . . . , N . The
space filling requirement leads to N constraints, because each level k must separately be space
filling (see Assumption 5 in the main text). The terms in the last sum of equation (1) make use of
Assumption 4 that the branching ratio is constant, and thus the number of vessels at level k is nk.

Our goal is to understand how minimization of energy dissipation constrains the network
architecture. To this end, we express the objective function (1) explicitly in terms of network
parameters. In particular, we know from the main text that Vblood =

∑N
k=0 Nkπr2

klk. The
impedance for smooth flow through a rigid vessel at level k is given by the Poiseuille formula for
resistance

Zk = 8µlk/πr4
k, (2)

where µ is the viscosity of blood [4–7]. Within each level, the vessels are in parallel, thereby
lowering the impedance to flow through a single vessel. The total impedance at level k is the
impedance for a single vessel divided by the total number of vessels, Zk,tot = 8µlk/nkπr4

k. Across
levels, the vessels are in series, thereby compounding the resistances of individual vessels, making
it harder to push blood to the next level. Thus, the total resistance across the whole network is
the sum over the impedances at each level, Znet =

∑N
k=0 8µlk/nkπr4

k [1, 2]. Combining these
expressions and absorbing all constants into new definitions of the Lagrange multipliers (e.g.,
λ′ = πλ) yields

P = Q̇2
0

N∑
k=0

8µlk
nkπr4

k

+ λ′
N∑

k=0

nkr2
klk + λ′

MM +
N∑

k=0

λ′
kn

kl3k. (3)

Since the Lagrange multiplier calculation consists in differentiating this function and setting the
result to zero, we can divide the equation by any constant without affecting the outcome. We
divide by 8µQ̇2

0/π (since Q̇2
0 is constant by assumption), and absorb residual constants into a new

set of Lagrange multipliers, which we denote with λ̃•, where the bullet is a placeholder for an
appropriate subscript:

P =
N∑

k=0

lk
nkr4

k

+ λ̃

N∑
k=0

nkr2
klk + λ̃MM +

N∑
k=0

λ̃kn
kl3k. (4)

To determine what the minimization of P implies for the vessel radii, we proceed with the usual
Lagrange-multiplier calculation by differentiating P with respect to rk, at an arbitrary level k,
and setting the result to zero:

∂P
∂rk

= − 4lk
nkr5

k

+ 2λ̃nkrklk = 0. (5)

Solving this equation for the Lagrange-multiplier λ̃ yields

λ̃ =
2

n2kr6
k

. (6)

For the blood volume to be space filling (Assumption 5) and to conform with body mass, M , λ̃
must be independent of k, which requires that n2kr6

k be constant across levels k. This, in turn,
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implies that n2(k+1)r6
k+1/n2kr6

k = 1 or the WBE result [1, 2] that

β> =
rk+1

rk
= n−1/3, (7)

which is equation (3) in Assumption 6 of the main paper. Such a scaling ratio for radii means
that the total cross sectional area of all vessels at level k, Ak,tot is less than the total cross
sectional area at level k + 1, Ak+1,tot. Indeed, using equation (7), we obtain
Ak,tot = nkπr2

k = nk+2/3πr2
k+1 = n−1/3Ak+1,tot. This area-increasing property causes the blood to

slow down as it flows through the network, which not only reduces resistance from friction, but
also allows for effective transfer of oxygen from capillaries to cells by diffusion.

To examine the strength of selection on these optimal choices for λ̃ and the radii scaling ratio,
β = rk+1/rk, one needs to understand how variation in these parameters affects the energy
minimization relative to constraints and thus the objective function P. To describe how this
could be done, we take just the terms of P that depend on radius at a given level k,
lk/(nkr4

k) + λ̃nkr2
klk. These terms represent the energy loss to dissipation for a specified volume of

blood that must be pumped through level k. Separately minimizing each level k guarantees that
the sum over levels will be minimized because it is the sum of all positive terms that are at their
minimum. The two other terms in P, λ̃MM + λ̃kn

kl3k, can be ignored because they will just add a
constant value that is independent of rk and that does not affect the curvature of P for varying
rk. Furthermore, for this calculation the choice of multiplicative constants is left arbitrary and
should not affect the curvature. It is difficult to display the results or to provide a visual intuition
for Lagrange multiplier calculations because these types of calculations are variational and
multiple variables are allowed to change while multiple constraints are being applied.

To simplify the calculations, we choose level k = 5 with l = 1 and r = 1. Thus, Eq. 6 predicts
λ̃ = 1/512. As seen in Figure 1, if we substitute λ̃ = 1/512 into l/(nkr4) + λ̃nkr2l for our choice of
parameters and plot the function versus r, the minimum does indeed occur at our chosen value of
r = 1 as it should. We also present curves lk/(nkr4

k) + λ̃nkr2
klk with λ̃ = 0.0015 and λ̃ = 0.0025. If

we consider only networks with fixed values of length (l = 1), radius (r = 1), level (k = 5), and
total blood volume (n5π) at each level, then these other choices for λ̃ must be interpreted as cases
in which either the network of the organism has not been optimized by selection or in which there
are additional terms that need to be included in P in order to correctly optimize the network.
The former corresponds to a lack of evolutionary optimization, while the latter is equivalent to
the claim that the objective function constructed by WBE was incorrect and possibly lacked
additional constraints. In either case different choices of λ̃ will dictate different network
architectures such that the scaling ratio for the radii, β>, varies with n to a different power or
more likely is no longer simply related to n or even a scale-free ratio. Apart from vertically
shifting the overall curve, we see that changes in λ̃ affect whether our network with a radius of 1
at level 5 is optimized. In Figure 1 changes in λ̃ of about 25% translate into changes in the
optimal radius of about 5% and changes in the objective function of about 1%, which is a very
slight amount. However, this figure is only meant to serve as a qualitative guide, and actual
interpretations of selection strength or evolutionary pressure will require a much more detailed
analysis that is more firmly grounded in organismal variation in network architecture and
hydrodynamics.
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Figure 1: Plot for an arbitrary level of the cardiovascular network (l/(nkr4) + λ̃nkr2l) taken from the first
two terms of the objective function P in Eq. 4 versus the the radius of the vessel, r. For simplicity, we
chose the parameters l = 1, r = 1, and k = 5. Using these parameters, the predicted value for the Lagrange
multiplier is λ̃ = 2/n2kr6 = 1/512 ≈ 0.00195. We plot the first two terms of the objective function versus
r for the choices of the Lagrange multiplier λ̃ at 1/512 ≈ 0.00195 (red curve) and show that the minimum
does indeed occur at the chosen value of r = 1. We also show results for the same choice of parameters
as before but with λ̃ chosen to be 0.0015 (black curve) and 0.0025 (green curve) respectively. These other
values for λ̃ do not exhibit a minimum at r = 1, indicating that either they are not evolutionarily optimized
or that the objective function constructed by WBE is incorrect.

Finally, optimizing with respect to lk,

∂P
∂lk

=
1

nkr4
k

+ λ̃nkr2
k + 3λ̃kn

kl2k = 0, (8)

yields the corresponding Lagrange multiplier as

λ̃k = − 1
n2kr4

kl
2
k

. (9)

λ̃k represents the geometry of service volumes at level k. The meaning of space filling - see
Assumption 5 in the main text - requires λ̃k to be the same across all levels k. To demand that
n2kr4

kl
2
k be constant is equivalent - using equation (7) - to

γ =
lk+1

lk
= n−1/3, (10)

consistent with our earlier derivation of γ in Assumption 5 [1,2].
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1.1.2 Proportionality of blood volume and body mass

We next use the objective function P to relate network (blood) volume to body mass. Note that
substituting equation (9) into the space filling term - the last term in equation (4) - gives∑N

k=0 λ̃kn
kl3k = −

∑N
k=0

lk
nkr4

k
. This expression, cancels with the first term of P, which represents

the total network impedance Znet. Returning to equation (1) in whole-organism notation, we are
left with

P = λVblood + λMM. (11)

Now, varying the body mass of the organism and minimizing P as

∂P
∂M

= λ
∂Vblood

∂M
+ λM = 0, (12)

we find
∂Vblood

∂M
= −λM

λ
. (13)

Integrating this equation yields Vblood = −(λM/λ)M + C0. Demanding that Vblood = 0 for M = 0
gives C0 = 0, and thus [1, 2]:

Vblood ∝ M. (14)

This result is crucial within the theory for comparing organisms of different sizes. As detailed in
section 2.2 of the main text, the self-similar network structure provides a function mapping the
number of capillaries to network volume - which is effectively Vblood - and Vblood is proportional to
body mass M . At the same time, the number of capillaries in a network determines metabolic
rate, as the capillaries are the only delivery channels (by Assumption 8, and their geometry is
constant across organisms, by Assumption 7). Clearly, equation (14) therefore underlies nearly
every result in WBE and our main text. It is important to empasize that this calculation only
derives the proportionality between Vblood and M for the case of dissipation minimization, not for
impedance matching. It is also important to realize that the ordering of optimizations is
important. First we determine the network architecture for organisms of fixed size, and then we
use the results to derive the proportionality of network volume to organism size or body mass.

1.2 Minimization of energy loss to wave reflections

In larger vessels, for example near the heart, dissipation is less important, and reflection of
pumped blood at vessel branch points becomes the dominant form of energy loss. In contrast to
dissipation, which always causes some energy loss, reflections (and thus any energy loss
attributable to them) can be completely eliminated using particular network architectures.

To derive the correct architecture for eliminating reflections, we perform a standard impedance
matching calculation, identical to calculations done to minimize reflections for audio systems or
electric power lines [4–7]. There are three components to pulsatile blood flow:

(a) the incident flow (labelled i) from a vessel at level k,

(b) the transmitted wave (labelled t) into a vessel at level k + 1, and
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(c) the reflected flow (labelled r) back into a vessel at level k.

The pressures, impedances, and volume flow rates for each of these components can be related to
one another using the hydrodynamic version of Ohm’s law

pi
k = |Q̇i

k|Zk

pt
k = |Q̇t

k+1|Zk+1

pr
k = −|Q̇r

k|Zk. (15)

By continuity, the total pressure across a branching junction cannot change. Since pressure is a
local (per area) quantity, we have

pi
k + pr

k = pt
k, (16)

independent of the number of vessels the flow divides into. Likewise, the volume flow rates must
be equal at the branching junction. However, volume flow rate is a bulk quantity and thus
depends on the branching:

|Q̇i
k| − |Q̇r

k| = n|Q̇t
k|, (17)

where n is the branching ratio. Inserting equation (15) into (17) yields

pi
k − pr

k =
nZk

Zk+1
pt

k. (18)

Adding equations (16) and (18) gives

2pi
k = (1 +

nZk

Zk+1
)pt

k, (19)

while subtracting them yields

2pr
k = (1− nZk

Zk+1
)pt

k = 2
1− nZk

Zk+1

1 + nZk
Zk+1

pi
k. (20)

Classic impedance matching asserts that the impedance of a vessel at level k matches the
impedance of the n parallel daughter vessels at level k + 1 when

1
Zk

=
n

Zk+1
or

nZk

Zk+1
= 1. (21)

When equation (21) is fulfilled, it follows from equation (20) that the volume flow rate and
pressure of the reflected wave is zero, i.e., pr

k = 0. Consistent with this, we see from equation (19)
that the pressure of the transmitted wave exactly equals the pressure of the incident wave,
pi

k = pt
k. Impedance matching, as expressed by equation (21), therefore completely eliminates

reflected flow and any resultant energy loss. But what are the consequences of impedance
matching for the network architecture?
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For large vessels near the heart, blood flow is pulsatile and the impedance is given by

Zk = c2
0ρ/πr2

kc, (22)

where c0 is the Korteweg-Moens velocity, ρ is the density of blood, and c is the wave velocity [4–7].
When requiring continuity of wave properties, thus allowing only rk to vary across levels,
impedance matching as expressed by equation (21) yields nr2

k+1/r2
k = 1 or the WBE result [1, 2]

β< =
rk+1

rk
= n−1/2. (23)

This scaling ratio for radii means that the sum of the cross sectional areas of vessels at level k
equals that of vessels at level k + 1. Indeed, using equation (23), we find preservation of area,
Ak,tot = nkπr2

k = nk+1πr2
k+1 = Ak+1,tot. In this region near the heart, the blood does not slow

down, maintaining the same velocity at which it was pumped from the heart.

As for the case of dissipation, we can investigate how strongly deviations from optimality will
affect the results and begin to consider the strength of evolutionary pressures on network
architecture. Based on equation (20), we define the standard reflection coefficient, R, such that
|R|2 = |(1− (nZk/Zk+1))/(1 + (nZk/Zk+1))|2 [4–7]. Note that when impedances are matched
(equation (21)), the reflection coefficient is zero. In Figure 2 we plot the square of the reflection
coefficient versus the scaling ratio for the radii β = rk+1/rk. A minimum at the value of
β = 0.707 ≈ 2−1/2, corresponding to area-preserving branching and impedance matching, is
clearly evident, and values for |R|2 increase quickly away from this value for β. Indeed, comparing
Figure 2 with Figure 1 naively suggests that evolutionary pressure to minimize energy loss due to
reflections is greater than pressure to minimize energy loss to dissipation. This is an intriguing
area for further research.

Interestingly, impedance matching for small vessels with Poiseuille flow, and thus impedance
given by equation (2), leads to equation (10), recovering the same result obtained with Lagrange
multipliers in the case of minimizing energy loss from dissipation. Consequently, vessels whose
radii scale according to the ratio (10) simultaneously minimize energy loss to both dissipation and
reflections in Poiseuille flow.

1.3 Matching impedance at all levels

Section 1 and 2 were about the limiting cases of small and large vessels. In this section, we
outline work originally done by Womersley for calculating the impedance to blood flow through
an elastic vessel [8, 9]. This approach allows us to derive a general expression for impedance that
reduces to equation (2) for small vessels, to equation (22) for large vessels, and to more
complicated forms for vessels of intermediate size [1, 2]. In this way, we can calculate impedance
at all levels, and study more carefully the transition from levels with mainly impedance matching
to levels with mainly dissipation minimization.

As with all hydrodynamic calculations, the natural starting point are the Navier-Stokes
equations [4–10]. Here we assume that non-linear turbulent flow is negligible to first order. The
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Figure 2: Plot of the reflection coefficient squared (|R|2 = |(1 − nZk/Zk+1)/(1 + nZk/Zk+1)|2) versus the
ratio of vessel radii β = rk+1/rk at a branching junction. The impedances are defined as in equations 34
and 35 in the supplementary material. The kinematic viscosity, the ratio of blood viscosity to blood density,
is 2.57x10−6s/m2. We choose a bifurcating branching ratio n = 2, and the wave frequency and the radius
of the parent vessel are taken to be 1 Hz and 1.5 cm, respectively, to approximate the values for the human
aorta. As long as the radius of the parent vessel is large as defined by equation 33, different choices for the
wave frequency and radius of the parent vessel will change the exact values in the plot but not the shape
of the curve. The plot reveals that the reflection coefficient is zero at β = 0.707 ≈ 2−1/2, which exactly
corresponds to area-preserving branching and impedance matching.

general equation for blood flow then is

ρ
∂v
∂t

= µ∇2v−∇p, (24)

where ρ denotes the density of blood, µ the viscosity, the vector v is the local fluid velocity at
time t, and p is the local pressure. A similar equation, known as the Navier equation, describes
the motion of vessel walls

ρw
∂2X
∂2t

= E∇2X−∇p, (25)

where ρw denotes the density of the vessel wall, E denotes the modulus of elasticity of the vessel
wall, and the vector X is the local displacement of the wall. Since X is a position, its second time
derivative in equation (25) is an acceleration. Likewise, the first time derivative of the fluid
velocity on the left side of equation (24) is also an acceleration. Both equations (24) and (25) are
coupled at the boundary of blood and vessel-wall, where the motion of one is exactly tied to the
motion of the other. The components of velocity and force of fluid and vessel wall must be
continuous and therefore match at the boundary. Further conditions are imposed on the outer
part of the vessel wall, which is in contact with body tissue. The outer vessel wall is assumed to
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be nearly stationary, because it is secured by the surrounding tissue.

To solve these equations, we make a few simplifying assumptions. Blood is, to an excellent
approximation, an incompressible fluid. By local conservation of fluid, we have ∇ � v = 0. Taking
the vector derivative, ∇ of equation (24) thus yields the further condition that

∇2p = 0, (26)

which can be used to further simplify equations (24) and (25). Finally, the thickness of the vessel
wall h, which appears in the equations when taking into account the boundary conditions, is
small compared to the static equilibrium value of the vessel radius R, allowing further simplifying
expansions. We model the heart beat as delivering an oscillatory pressure gradient, represented
by a plane wave:

∂p
∂z

= p0e
iω0t, (27)

where z is the axial direction along the vessel, ω0 is the frequency of the wave, and p0 is a
normalization constant. All of these approximations are well grounded in the biology of the
circulatory system, and deviations arising from them should be small.

Instead of carrying out the general calculations - whose result we provide below - we just highlight
how the calculation is done for the simpler case of a rigid tube. Using the above approximations
and boundary conditions, Fourier transforms or separation of variables can be used to analytically
solve equations (24) and (25) to obtain the velocity profile in the axial direction:

u(r, t) = eiω0t ip0

ρω0

(
1− J0(k0r)

J0(k0R)

)
. (28)

Equation (28) describes how the axial blood velocity varies with the distance from the radial
center of the vessel, r, while oscillating in time t. In this expression, R is the radius or distance
from the center of the vessel to the inner vessel wall, k0 =

√
ω0ρ/iµ, and the function J0 is the

zeroth-order Bessel function, which commonly occurs in problems with radial symmetry [11].
Note that at the vessel wall, r = R, the axial velocity is zero, while at the vessel center, r = 0, the
axial velocity is maximal eiω0tip0/ρω0.

For this rigid tube calculation, it is now straightforward to derive the volume flow rate Q̇, because
it is just the velocity profile integrated over an area element pointing in the axial direction,
describing how fast each area element of fluid is flowing forward:

Q̇ =
d(Blood Volume)

dt
=

∫ R

0
u(r, t)dA = 2π

∫ R

0
u(r, t)rdr. (29)

Using standard identities for Bessel functions and their integrals [11,12], this can be manipulated
to yield

Q̇ = −i
πp0R

4

µ

eiω0tJ2(i3/2α)
α2J0(i3/2α)

, (30)

where α =
√

ω0ρ/µR = k0R/
√
−i is the Womersley number and J2 is the Bessel function of

second order [8, 9]. As first noted by Womersley, the character of the wave, and thus of the
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volume flow rate, depends crucially on α, in particular whether α is greater than or less than 1.
Within human circulatory systems, the value of α is near 15 in the aorta, 5 in the arteries, 0.04 in
the arterioles, and 0.005 in the capillaries [1, 2]. Using the known asymptotic expansions for
Bessel functions [11,12], one obtains that for small values of |α| (corresponding to vessels with
small radii) the Bessel functions are power series, while for large values of |α| (corresponding to
vessels with large radii) the Bessel functions exhibit oscillatory behavior. Consequently, equation
(30) can be greatly simplified in these limits to yield

Q̇ =
πp0R

4

8µ
eiω0t |α| � 1 or R �

√
µ

ω0ρ

Q̇ =
πp0R

2

ω0ρ
ei(ω0t−π/2) |α| � 1 or R �

√
µ

ω0ρ
. (31)

Note that different physical quantities become relevant in the two regimes. The viscosity, µ, is
relevant in the small-vessel regime (|α| � 1) and the density ρ is relevant in the large-vessel
regime (|α| � 1). Moreover, the flow in the large vessels is phase shifted by e−iπ/2 = 90◦

compared to flow in small vessels.

To deal with the multiple forms of energy loss - dissipation and reflection - we have introduced a
complex analog of the volume flow rate and pressure gradients. The definition of the complex
impedance, representing the difficulty of forward flow caused by both dissipation and reflections,
is the ratio of the pressure to the volume flow rate:

Z =
∆p

Q̇
. (32)

A larger impedance corresponds to larger pressures that result in smaller volume flow rates. The
pressure difference along the full length of the vessel, l, is
∆p =

∫ l
0(∂p/∂z)dz =

∫ l
0 p0e

iω0tdz = p0e
iω0tl. Thus, combining this with equations (31) and (32),

the impedance of a small and large vessel is given by [1, 2, 4–7]:

|Z| = 8µl

πR4
|α| � 1 or R �

√
µ

ω0ρ

|Z| = ρω0l

πR2
|α| � 1 or R �

√
µ

ω0ρ
. (33)

The result for small vessels is exactly equation (2), representing the impedance for smooth
Poiseuille flow. For larger vessels, the impedance has the same dependence on vessel radius as
equation (22) and thus impedance matching will lead to the same scaling result for radii as
equation (23). However, the remaining factor of ρω0l/π is not quite correct because of the
assumption of rigid vessel walls. Nevertheless, this calculation outlines the approach to the
problem and leads to the correct radial dependencies in both limits.

Returning to the case of elastic vessel walls, the result for the impedance is

Z =
c2
0ρ

πR2c
, (34)
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Figure 3: The graph depicts the βk ≡ rk+1/rk that minimizes the total power lost in going from one branching
level to the next as a function of the vessel radius, rk, in units of meters. We have chosen n = 2, the minimum
radius to be the average value for a capillary, rcap = 8µm, and the physical values for kinematic viscosity
of µ/ρ = 2.57x10−6s/m2 and for wave frequency of ω0 = 1.17s−1. For smaller values of rk, the minimum
occurs around βk = 0.794, and for larger values of rk, the minimum occurs around βk = 0.710. These values
match the predicted values from WBE of βk = n−1/3 = 2−1/3 = 0.794 and βk = n−1/2 = 2−1/2 = 0.707
extremely well. Also, note that the transition from area-preserving to area-increasing branching begins at
rk ≈ 1cm and is completed by rk ≈ 1mm.

where (
c

c0

)2

= −J2(i3/2α)
J0(i3/2α)

, (35)

with c the wave velocity and c0 the classical Korteweg-Moens velocity [1, 2, 4–7]. This expression
can be shown to reduce to equations (2) and (22) in the limit of small and large vessels. Outside
these limiting cases, expression (35) allows computation of the impedance for vessels of
intermediate size (α ≈ 1 or R ≈

√
µ

ω0ρ), which can be used to study how the transition from pure

impedance matching to pure dissipation minimization, and thus from equation (7) to equation
(23), actually occurs (see Figure 3).

2 Accounting for the log-normal distribution in species abundance with body mass

There are many more small mammals than large ones. This bias in the body mass distribution is
reflected, likely even accentuated, in available empirical data for mammalian metabolic rate and
body size. Studies have shown that the distribution of body masses across species is
approximately log-normal [13–15]. The shape of this distribution would be inconsequential if the
metabolic rate to body mass relationship were a perfect power law with no scatter. As
demonstrated above, however, the WBE model does not predict a pure power law, and as such
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the distribution of organism sizes could have an influence on the measured value of the exponent.
Furthermore, different species of the same average body mass exhibit scatter in their average
basal metabolic rates, with measurement inaccuracies further compounding the observed scatter.
It stands to reason that the more the body size distribution is skewed towards small mammals,
the more it will emphasize finite-size effects, an issue we shall revisit in section 2.3. At the same
time, this bias also amplifies the data scatter for small mammals, washing out their influence on
the overall fit.

One way to account for the effects of the log-normal body mass distribution on our analysis of the
scaling exponent in section 2.1 is to logarithmically bin the artificial data such that bin-averages
are evenly distributed along the abscissa of our plots [16]. Another way is to sample networks
directly from a log-normal size distribution, and then perform linear regressions on that data. We
shall do the latter.

To proceed, we first need to determine the parameters of the appropriate log-normal distribution.
The number of levels in the cardiovascular system scales approximately logarithmically with body
mass [1]. Consequently, a log-normal distribution for body mass corresponds to a normal
distribution in the number of levels. Since the number of levels, N , is just the logarithm of body
mass, lnM , scaled by a constant factor that depends on the branching ratio [1], there is an
approximate equivalence between Z-scores for the lnM and the N distributions.

In order to generate a distribution from which to sample model organisms, we must determine an
average and a standard deviation for the N -distribution. To do this, we exploit the Z-score
equivalence. According to WBE, the smallest mammal (a shrew) has 25 levels assuming n = 2.
Yet, the smallest organism included in the empirical data collected by Savage et al. [16] has a body
mass about 5 times larger than a shrew. We therefore take the smallest organism in this analysis
to have 27 levels since the blood volume of an organism with 27 levels is ∼5 times the blood
volume of an organism with 25 levels in our calculations. The largest organism in the Savage data
set is about 1.5× 106 the size of the smallest organism, allowing us to determine a reasonable
maximal N . Equating the Z-scores for the lnM distribution and the N distribution, we obtain

ZS =
lnMS − 〈lnM〉

σln M
=

NS − 〈N〉
σN

ZL =
lnML − 〈lnM〉

σln M
=

NL − 〈N〉
σN

, (36)

where ZS and ZL are the relevant Z-scores for MS and ML (the smallest and largest body masses
in the data), σ is the standard deviation of the variable identified in the subscript, and 〈·〉 denotes
an average. Since ZS and ZL can be determined from empirical data, we are left with two
equations and two unknowns. From this we determined the values of 〈N〉 and σN to be 32 and 4,
respectively. These parameters define a Gaussian distribution from which we sampled 1000 values
for N . With these values we generated corresponding WBE networks (with n = 2 and N̄ = 24),
obtaining a sample biased towards small networks, much like in the empirical data set. From this
computational data set we determined a scaling exponent of 0.83, which is even larger than the
exponent observed when masses are sampled uniformly, apparently compounding the discrepancy
between the finite-size WBE model and empirical data.

One might object that our procedure ignores measurement error, differences between species of
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Figure 4: Log-normal sampling bias for small networks. A single realization of 1000 numerically
generated data points for networks with a branching ratio of n = 2 built with area-preserving branching for
large vessels and area-increasing branching for small vessels. The transition between these regimes is always
N̄ = 24. The networks are generated by sampling the number of levels from a log-normal distribution.
(See text for details.) Based on empirical data [16], the underlying distribution ranges from a minimum of
27 levels to a maximum of 44 levels with an average of 32 and a standard deviation of 4. The scatter is
generated by multiplying the blood volume and number of capillaries by two random numbers drawn from
a uniform distribution on the interval [0.3, 1.7]. This procedure generates one order of magnitude scatter in
metabolic rate for a given mass, mimicking the variation observed in empirical data for mammals. Red line:
Fit to artificial data without scatter - exponent is 0.83. Green line: Fit to artificial data with added scatter
- exponent is 0.8.

the same average body mass, and other sources of scatter in the data, since each artificial network
with the same number of levels has identical values for Ncap and Vblood. In order to model the
scatter observed in empirical data, we randomized the log-normally distributed simulated data.
For each (Vblood, Ncap) pair, we chose two random numbers, q1 and q2, from a uniform distribution
on the interval [0.3, 1.7] and replaced (Vblood, Ncap) with (q1Vblood, q2Ncap). This procedure creates
a scatter of about one order of magnitude in metabolic rate for each body mass value along the
abscissa, similar to the scatter observed in the empirical data of Savage et al. [16]. Figure 4
displays a single realization of our artificial log-normally distributed data with scatter. The
addition of scatter in this case reduced the exponent from 0.83 to 0.80 - a step in the right
direction, but still not in satisfying agreement with empirical data. Applying this procedure to
sets of unscattered data with scaling exponents close to 3/4 or data with a larger degree of scatter
(which washes out the log-normal bias in the overall fit) may lower the exponent to less than 3/4.
We conclude that accounting for a log-normal distribution of body-mass does not improve the
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predictions of the WBE model.

3 Impact of finite-size corrections on additional WBE predictions

In addition to the 3/4 exponent for metabolic rate (in the limit of infinite network size), the WBE
model predicts the scaling of many organismal rates, times, and lengths. Table 1 of the original
WBE paper [1] provides a sample of such predictions. In this section we recalculate that table in
the light of finite-size effects. We have already predicted in the main text how these effects impact
the scaling of capillary number with blood volume and thus body mass. In most cases, organismal
rates, times, or lengths can be related to the number of capillaries, and directly inherit their
finite-size scaling corrections. The variables listed in column 1 are the same as in WBE. The
predicted scaling exponents in column 2 report our finite-size corrections based on the canonical
WBE model. Column 3 reports the observed scaling exponents as reported in the original Table 1
of WBE [1]. Column 4 shows the asymptotic results reported in the original WBE paper [1].

Variable Finite-Size Scaling Observed WBE Scaling
Aorta radius r0 0.81/2 = 0.405 0.36 (3/4)/2 = 0.375

Aorta pressure ∆p0 0 0.032 0
Aorta blood velocity u0 0 0.07 0

Blood volume Vb 1 1.00 1
Circulation time (large) 0.81/3 = 0.27 0.25 (3/4)/3 = 0.25
Circulation time (small) 0 ND 0 (unreported)

Circulation distance l 0.81/3 = 0.27 ND (3/4)/3 = 0.25
Cardiac stroke volume 4 ∗ 0.81/3 = 1.08 1.03 (4/3) ∗ (3/4) = 1

Cardiac frequency ω −0.81/3 = −0.27 −0.25 −(3/4)/3 = −0.25
Cardiac output Q̇0 0.81 0.74 3/4 = 0.75

Number of capillaries Ncap 0.81 ND 3/4 = 0.75
Service volume radius (0.81− 1)/3 = −0.0633 ND (3/4− 1)/3 = 0.083
Womersley number α 0.81/3 = 0.27 0.25 (3/4)/3 = 0.25
Density of capillaries 0.81− 1 = −0.19 −0.095 −1/12 = −0.083 ∗

O2 affinity of blood (0.81− 1)/3 = −0.0633 −0.089 (3/4− 1)/3 = −0.083
Total resistance Z −0.81 −076 −3/4 = −0.75
Metabolic rate B 0.81 0.74 3/4 = 0.75

Table 1: The table reports our finite-size corrections to the predictions listed in Table 1 of WBE [1].
Predictions refer to the exponent that governs the scaling relation between the variable in column 1 and
body mass M . This table should be read as a further evaluation of the WBE model for finite vascular
networks. ∗ We cannot reproduce the WBE derivation for the capillary density. See text for details.

In some cases the asymptotic and finite-size predictions agree; in other cases, they don’t. For
circulation time, WBE report just the scaling exponent of 1/4 that holds for mammals in the
asymptotic limit of infinite size. However, for small mammals the circulation time should actually
have a scaling exponent close to 0. This transition in the scaling exponent is exactly due to the
transition from area-preserving to area-increasing branching in the original WBE model. The
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theory would gain strong support if a transition or this type of curvature could be observed in
empirical data for circulation times. WBE also report a scaling exponent of −1/12 for the density
of capillaries. We are unable to re-create this original prediction. Indeed, we believe the correct
prediction should be −1/4.

The derivation of these scaling exponents is left unexplained in the original WBE paper. As an
additional service to the community, we use this Supplementary Material as a venue to
summarize the origins of these scaling relations. Many of our derivations will be expressed in
terms of Ncap; using our finding that Ncap ∝ M0.81, these results can be easily converted into
scaling predictions as they relate to body mass M . This is how they are reported in our Table 1.

Aorta radius r0: The aorta radius can be related to capillary radius and number by using the
scaling relations β< and β> (equations (3-4) in the main text) to obtain r0 ∝ N

1/2
cap nN̄/6rcap.

Since rcap, n, and N̄ (the number of area-increasing levels in the network) are all invariant
with respect to body mass M , we have that r0 ∝ N

1/2
cap ∝ M−0.405. In this last step we used

our result that Ncap ∝ V 0.81
blood ∝ M0.81 when finite-size corrections are included.

Aorta pressure ∆p0: The aorta pressure scales with an exponent of 0 because ∆p0 = Q̇0Z and
Q̇0 and Z scale inversely to one another.

Aorta blood velocity u0: The aorta blood velocity times the cross-sectional area of the aorta is
just the volume flow rate of blood Q̇0 = u0A0. Since Q̇0 ∝ B ∝ Ncap (by assumption) and
A0 ∝ r2

0 ∝ Ncap (from our previous arguments), their scaling cancels out, leaving u0 as an
invariant with respect to body mass.

Blood volume Vb: Results from the Lagrange multiplier calculations in earlier sections of the
Supplementary Material show that blood volume is directly proportional to body mass,
Vb ∝ M .

Circulation time: The circulation time is the overall time it takes the blood to traverse each of
the k levels:

∑N
k=0 lk/uk. For area-increasing or dissipative levels, there are always

N̄ = N − k̄ levels; lk and uk are both determined by the invariant length and flow rate of a
capillary and distance (in terms of levels) from the capillary: lk = n(N−k)/3lcap by the
scaling ratio γ, and uk = n(N−k)/3ucap by conservation of fluid (i.e., Q̇k = Q̇k+1). Thus, the
time to traverse a vessel at level k is lk/uk = lcap/ucap, which is independent of k, and the
circulation time for the smallest mammal is just

∑N
0 lcap/ucap = N̄(lcap/ucap). Including

area-preserving branching will add time to this constant value. For small mammals, this
additional time will be negligible, resulting in a scaling exponent of 0. For large mammals,
area-preserving branching along with conservation of fluid demands that uk = u0 ∝ M0

from our earlier arguments. When the time to flow through the area-preserving regime
begins to dominate, the circulation time for large mammals scales as∑k̄

0 lk =
∑k̄

0 n(N−k)/3lcap ∝ N
1/3
cap , where we used the scaling ratio γ to relate lk to lcap.

Circulation distance l: Circulation distance is just the sum over the lengths of the vessels, and
thus scales as N

1/3
cap .
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Cardiac stroke volume: The cardiac stroke volume is assumed to equal the volume of the
aorta, V0 ∝ r2

0l0. We have previously derived r0 ∝ N
1/2
cap ; using the scaling ratio γ, it is

straightforward to show that l0 ∝ N
1/3
cap , hence V0 ∝ N

4/3
cap .

Cardiac frequency ω: The product of the cardiac stroke volume V0 and the cardiac frequency
ω is equal to the volume flow rate ωV0 = Q̇0; using our prior derivations, we have
ω ∝ N

−1/3
cap . This result may be surprising, because cardiac frequency or heart rate is

typically assumed to scale as ω ∝ B/M . Heart volume is typically assumed to scale linearly
with body mass and metabolic rate is assumed to scale as the volume flow rate of the aorta,
so that ω = Q̇0/V0 ∝ B/M . Indeed, most biological times are assumed to scale as
B/M [16–18] . However, within the strict interpretation of the WBE model, an increase in
metabolic rate is associated with an increase in the number of capillaries, which is, in turn,
associated with an increase in heart volume because of the relationships between aorta
length and radius on the one hand and the number of capillaries on the other hand. This
increase in heart volume allows for more blood to be pumped with each contraction of the
heart, and consequently, for a lower heart rate or cardiac frequency to supply the required
amount of blood. Intriguingly, when the scaling for metabolic rate is B ∝ Ncap ∝ M3/4, we
obtain the same result along both arguments: ω ∝ N

−1/3
cap ∝ M−1/4 and ω ∝ B/M ∝ M−1/4.

Any value for the scaling exponent other than 3/4, however, will yield different predictions
for the two lines of argumentation. For example, for our finite-size corrected exponent of
0.81, the strict interpretation of the WBE model yields ω ∝ N

−1/3
cap ∝ M−0.27, while the

second line of reasoning yields ω ∝ B/M ∝ Ncap/M ∝ M−0.19.

Cardiac output Q̇0 & number of capillaries Ncap: The cardiac output or volume flow rate
Q̇0 and Ncap are both directly proportional to metabolic rate, so they must also be directly
proportional to one another. Following our results in the main text, the number of
capillaries Ncap scales as V 0.81

blood ∝ M0.81 and combines with the above arguments to yield
scaling exponents for each variable with body mass, M , as reported in Table 1.

Service volume radius: WBE argue that each capillary feeds a collection of cells known as a
service volume, VS . Together, these volumes add up to the volume of the entire body, Vbody.
Hence, NcapVS = Vbody, and the service volume radius scales as
rS ∝ (VS)1/3 ∝ (Vbody/Ncap)1/3 ∝ M (1−0.81)/3.

Womersley number α: The Womersley number is defined to be α =
√

ωρ/µr. Noting that the
density ρ and viscosity µ are constants and using the previously derived scaling relations for
the cardiac frequency ω and the aorta radius r0 gives the predicted scaling for α.

Density of capillaries: The density of capillaries is Ncap/Vbody. Assuming a constant density
(Vbody ∝ M) yields M (0.81−1).

Oxygen affinity of blood & total resistance Z: Following the arguments given explicitly in
WBE [1], we derive that the oxygen affinity of blood should scale as M (1−0.81)/3, and that
the total resistance for non-pulsatile blood flow scales as Z ∝ 1/Ncap.
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