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ABSTRACT

While atom tracking with isotope-labeled compounds is an essential and sophisticated wet-
lab tool to, for example, illuminate reaction mechanisms, there exists only a limited amount
of formal methods to approach the problem. Specifically, when large (bio-)chemical net-
works are considered where reactions are stereospecific, rigorous techniques are inevitable.
We present an approach using the right Cayley graph of a monoid to track atoms con-
currently through sequences of reactions and predict their potential location in product
molecules. This can not only be used to systematically build hypothesis or reject reaction
mechanisms (we will use the ANRORC mechanism ‘‘Addition of the Nucleophile, Ring
Opening, and Ring Closure’’ as an example) but also to infer naturally occurring subsystems
of (bio-)chemical systems. Our results include the analysis of the carbon traces within the
tricarboxylic acid cycle and infer subsystems based on projections of the right Cayley graph
onto a set of relevant atoms.

Keywords: algorithmic cheminformatics, chemical reaction networks, computational biology,

double pushout, graph transformations.

1. INTRODUCTION

Traditionally, atom tracking is used in chemistry to understand the underlying reactions and in-

teractions behind some chemical or biological system. In practice, atoms are usually tracked using

isotopic labeling experiments. In a typical isotopic labeling experiment, one or several atoms of some educt

molecule of the chemical system we wish to examine are replaced by an isotopic equivalent (e.g., 12C is

replaced with 13C). These compounds are then introduced to the system of interest, and the resulting product

compounds are examined, for example, by mass spectrometry (Chahrour et al., 2015) or nuclear magnetic

resonance (Deev et al., 2019). By determining the positions of the isotopes in the product compounds,

information about the underlying reactions might then be derived. From a theoretical perspective, charac-

terizing a formal framework to track atoms through reactions is an important step to understand the possible

behaviors of a chemical or biological system.

In this contribution, we introduce such a framework based on concepts rooted in semigroup theory.

Semigroup theory can be used as a tool to analyze biological systems such as metabolic and gene regulatory
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networks (Egri-Nagy and Nehaniv, 2008; Nehaniv et al., 2015). In particular, Krohn–Rhodes theory

(Rhodes et al., 2010) was used to analyze biological systems by decomposing a semigroup into simpler

components. The networks are modeled as state automatas (or ensembles of automatas), and their char-

acteristic semigroup, that is, the semigroup that characterizes the transition function of the automata

(Mikolajczak, 1991), is then decomposed using Krohn–Rhodes decompositions or, if not computationally

feasible, the holonomy decomposition variant (Egri-Nagy and Nehaniv, 2015). The result is a set of

symmetric natural subsystems and an associated hierarchy between them, which can then be used to reason

about the system. In Andersen et al. (2019), algebraic structures were employed for modeling atom

tracking: graph transformation rules are iteratively applied to sets of undirected graphs (molecules) to

generate the hyperedges (the chemical reactions) of a directed hypergraph (the chemical reactions network)

(Andersen et al., 2013, 2016). A semigroup is defined by using the (partial) transformations that naturally

arise from modeling chemical reactions as graph transformations. Utilizing this particular semigroup, the

so-called pathway tables can be constructed, detailing the orbit of single atoms through different pathways

to help with the design of isotopic labeling experiments.

In this work, we show that we can gain a deeper understanding of the analyzed system by considering how

atoms move in relation to each other. To this end, we briefly introduce useful terminology in Section 2, found

in graph transformation theory as well as semigroup theory. In Section 3, we show how the possible trajectories

of a subset of atoms can be intuitively represented as the (right) Cayley graph (Dénes, 1966) of the associated

semigroup of a chemical network. Moreover, we define natural subsystems of a chemical network in terms of

reversible atom configurations and show how they naturally relate to the strongly connected components of the

corresponding Cayley graph. We show the usefulness of our approach in Section 4.1 by using the constructions

defined in Section 3 to differentiate chemical pathways, based on the atom trajectories derived from each

pathway. We then show how the Cayley graph additionally provides a natural handle for the analysis of cyclic

chemical systems such as the tricarboxylic acid (TCA) cycle (Harvey and Ferrier, 2010).

2. PRELIMINARIES

2.1. Graphs

In this contribution, we consider directed as well as undirected connected graphs G = (V‚ E) with vertex

set V(G) = V and edge set E(G) = E. A graph is vertex or edge labeled if its vertices or edges are equipped

with a labeling function, respectively. If it is both vertex and edge labeled, we simply call the graph labeled.

We write l(x) for the vertex labels (x 2 V(G)) and edge labels (x 2 E(G)).

Given two (un)directed graphs G and G0 and a bijection u : V(G)! V(G0), we say that u is edge-

preserving if (v‚ u) 2 E(G) if and only if (u (v)‚ u (u)) 2 E(G0). Additionally, if G and G0 are labeled, u is

label-preserving if l(v) = l(u (v)) for any v 2 V(G) and l(v‚ u) = l(u (v)‚ u (u)) for any (v‚ u) 2 E(G). The

bijection u is an isomorphism if it is edge-preserving and, in the case that G and G0 are labeled, label-

preserving. If G = G0, then u is also an automorphism.

Given a (directed) graph G, we call G(strongly) connected if there exists a path from any vertex u to any

vertex v. We call the subgraph H of G a (strongly) connected component if H is a maximal (strongly)

connected subgraph.

Since the motivation of this work is rooted in chemistry, sometimes it is more natural to talk about the

undirected labeled graphs as molecules, their vertices as atoms (with labels defining the atom type), and

their edges as bonds (whose labels distinguish single, double, triple, and aromatic bonds, for instance),

while still using common graph terminology for mathematical precision.

2.2. Graph transformations

As molecules are modeled as undirected labeled graphs, it is natural to think of chemical reactions as graph

transformations, where a set of educt graphs are transformed into a set of product graphs. We model such

transformations using the double pushout (DPO) approach. For a detailed overview of the DPO approach and

its variations, see Habel et al. (2001). Here, we will use DPO as defined in the study of Andersen et al. (2016)

that specifically describes how to model chemical reactions as rules in a DPO framework.

A rule p describing a transformation of a graph pattern L into a graph pattern R is denoted as a span

L )�l K �!r R, where K is the subgraph of L remaining unchanged during rewriting and l and r are the
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subgraph morphism K to L and R, respectively. The rule p can be applied to a graph G if and only if (1) L

can be embedded in G (i.e., L is subgraph monomorphic to G) and (2) the graphs D and H exist such that the

diagram depicted in Figure 1 commutes.

The graphs D and H are unique if they exist (Habel et al., 2001). The graph H is the resulting graph

obtained by rewriting G with respect to the rule p. We call the application of p on G to obtain H via the map

m : L! G, a direct derivation and denote it as G 0
p‚ m

H or G 0
p

H, if m is not important. We note that m

is not necessarily unique, that is, there might exist a different map m0 such that G 0
p‚ m0

H.

For a DPO rule p to model chemistry, we follow the modeling in Andersen et al. (2013) and impose three

additional conditions that p must satisfy. (1) All graph morphisms must be injective (i.e., they describe

subgraph isomorphisms). (2) The restriction of graph morphisms l and r to the vertices must be bijective,

ensuring that atoms are conserved through a reaction. (3) Changes in charges and edges (chemical bonds)

must conserve the total number of electrons.

In the above framework, a chemical reaction is a direct derivation G 0
p‚ m

H, where each connected

component of G and H corresponds to the educt and product molecules, respectively. Conditions (1) and (2)

ensure that l and r, and by extension l0 and r0, are bijective mappings when restricted to the vertices. As a

consequence, we can track each atom through a chemical reaction modeled as a direct derivation by the

map l0 - 1 � r0. We note that like m, l0 and r0 might not be unique for a given direct derivation G 0
p

H. We

define the set of all such maps l0 - 1 � r0 for all possible maps l0 and r0 obtained from G 0
p

H as

tr(G 0
p

H). An example of a direct derivation representing a chemical reaction is depicted in Figure 2.

2.3. Chemical networks

We consider a directed hypergraph where each edge e = (e + ‚ e - ) is a pair of subsets of vertices.

Moreover, we let Ye = e + [ e - denote the set of vertices that are comprised in the start-vertex e + and the

end-vertex e - of e. In short, a chemical network CN is a hypergraph where each vertex is a connected

graph representing a molecule and each hyperedge a rule application corresponding to a chemical reaction.

Hence, every hyperedge e of CN corresponds to a set of direct derivations transforming the ingoing vertices

FIG. 1. A direct derivation.

FIG. 2. An example of a direct derivation. The mapping l, r, l0, and r0 is implicitly given by the depicted positions of

the atoms. Given a chemical network, each hyperedge directly corresponds to such a direct derivation.
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of e into its outgoing vertices. For a given set of edges E of CN, let D be the set of all direct derivations that

can be obtained from E. Then, tr(E) =
S

G 0
p

H2D tr(G 0
p

H) and tr(CN) = tr(E(CN)).

2.4. Semigroups and transformation semigroups

A semigroup is a pair (S‚ � ), where S is a set and � : S · S! S an associative binary operator on S.

We often write ab for the product a � b. A semigroup that contains the identity element 1 (i.e., s1 = s = 1s

for all s 2 S) is a monoid. The order of a semigroup S is its cardinality jSj. A subset A � S is said to

generate S or called a generating set for S, ÆAæ = S, if all elements of S can be expressed as a finite product

of elements in A.

Given a nonempty finite set X, a transformation on X is an arbitrary map f : X ! X that assigns to every

element x 2 X some element f (x) 2 X. The identity of a transformation on X is denoted 1X . A transfor-

mation monoid is a transformation semigroup with identity. If X = f1‚ . . . ‚ ng, we often use the notation

(i1‚ i2‚ . . . ‚ in) for the transformation f (j) = ij, 1 � j � n. Note that the elements i1‚ i2‚ . . . ‚ in need not

necessarily be pairwise distinct. Let T be the set of all possible transformations on X. If S � T and S is

closed under function composition �, then (S‚ � ) forms a semigroup, also called a transformation semi-

group. To emphasize that S is a collection of transformations on X, we will use the notation (X‚ S) for

transformation semigroups and say that S acts on X. Given a tuple �z = (z1‚ z2‚ . . . ‚ zn) of n distinct elements

of X and a transformation semigroup (X‚ S), the orbit of �z is defined as O(�z‚ S) = f(s(z1)‚ . . . ‚ s(zn)js 2 Sg:
In what follows, we use the notion y 2 t = (i1‚ i2‚ . . . ‚ in) to indicate that y = ij for some j, 1 � j � n.

Given a transformation semigroup (X‚ S) with generating set A, in symbols S = ÆAæ, we will employ the (right)

Cayley graph Cay (S‚ A) of S and A with vertex set S and edge set E(Cay (S‚ A)) = f(s‚ sa)js 2 S‚ a 2 Ag.
In addition, every edge (s‚ sa) of Cay(S‚ A) obtains label la, that is, the unique label that is associated to

each generator a in A. Similarly, the projected Cayley graph PCay(S‚ A‚ �z) is defined for tuples �z: It has

vertex set O(�z‚ S) and for all s 2 O(�z‚ S) and for all a 2 A, there is an edge (s‚ sa) with label la. A free

semigroup S + is the semigroup containing all finite sequences of strings constructed from the alphabet

S with concatenation as the associative binary operator. Adding the empty string e results in the free

monoid S� =S + [ f�g.

3. CHEMICAL NETWORKS AND THEIR ALGEBRAIC STRUCTURES

3.1. Characteristic monoids

Assume we are given some chemical network CN that is some hypergraph modeling some chemistry.

As we are interested in tracking the possible movements of atoms in CN, we are inherently interested in the

reactions of CN, that is, in its edge set E(CN). Indeed, atoms can only reconfigure to construct new

molecules under the execution of some reaction. We will refer to the execution of a reaction as an event.

The possible reconfigurations of atoms caused by a single event are given by the set of atom maps tr(CN)

constituting a set of (partial) transformations on X =
S

M2V(CN) V(M). Note that the vertex M 2 V(CN)

corresponds to an entire molecule for which V(M) denotes the set of atoms ( = labeled vertices). A

transformation t on X describes the position (i.e., in what molecule and where in the molecule the atom is

found) of each atom in X when X is transformed by t. In what follows, we will sometimes refer to such

transformations on X as atom states, as the transformations encapsulate the ‘‘state’’ of the network, that is,

the position of each atom. To track the possible movement of atoms through a chemical network, we must

consider sequences of events.

Definition 1 (Event Traces): Let S be an alphabet containing a unique identifier t for each atom map in

tr(CN). Then, an event trace is an element of the free monoid S�.
The free monoid S� contains all possible sequences of events that can move the atoms of X. Note that S�

does not track the actual atoms through event traces. For this, we use the following structure.

Definition 2 (Characteristic Monoids): Let the characteristic monoid of CN be defined as the trans-

formation monoid S(CN) = (X‚ Ætr(CN) [ 1Xæ): Moreover, given a set of edges E � E(CN), and the set of

atoms Y � X found in E (i.e., Y =[e2EYe), we let the characteristic monoid of E be defined as

S(E) = (Y‚ Ætr(E) [ 1Y æ):
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Let r : S! tr(CN) be the function that maps all identifiers of S to their corresponding atom map

in tr(CN). Given an event trace t = t1t2 . . . tn 2 S�, we let the events of t refer to their corresponding

transformations in tr(CN) when acting on an element s 2 S(CN), that is, st = sr (t1)r (t2) . . . r (tn) 2 S(CN).

Every event trace t 2 S� gives rise to a member S(CN), in particular the transformation 1Xt, that repre-

sents the resulting atom state obtained from moving atoms according to t. Hence, there is a homo-

morphism from S� to S(CN), meaning that S(CN) captures all possible movements of atoms through

reactions of CN.

Often, we are only interested in tracking the movement of a small number of atoms. Let �z be a tuple of

distinct elements from X that we want to track. Then, there is again a homomorphism from S� and

O(�z‚S(CN)). Namely, for a given event trace t 2 S�, we can track the atoms of �z as the atom state

1fx j x2�zgt corresponding to an element in the orbit O(�z‚ S(CN)), if we treat the element as a (partial)

transformation. As a result, O(�z‚ S(CN)) characterizes the possible movements of the atoms in �z, and we

will refer to its elements as atom states similarly to elements in S(CN) as they conceptually represent the

same thing.

We note that the above definitions are not unlike some of the core definitions within algebraic automata

theory (Mikolajczak, 1991). Here, the possible inputs of an automata are often defined in terms of strings

obtained from the free monoid on the alphabet of the automata. The characteristic semigroup is then

defined as the semigroup that characterizes the possible state transitions. In the same vein, we can view our

notion of event traces as the possible ‘‘inputs’’ to our chemical network CN that moves some initial

configuration of atoms 1X . The characteristic monoid of CN then characterizes the possible movements of

atoms through event traces.

In what follows, we let Cay(CN) denote the Cayley graph Cay(S(CN), tr(CN) [ 1X). Similarly, given a

tuple of atoms �z, we let PCay(CN‚ �z) denote the projected Cayley graph PCay(S(CN)‚ tr(CN) [ 1X‚ �z).

We note that by Definition 2, S(CN) is constructed from the generating set Ætr(CN) [ 1Xæ, and hence,

Cay(CN) and PCay(CN‚ �z) are well defined. Since the transformation 1X will always result in a loop on

every vertex of the (projected) Cayley graph and conveys no meaningful information, we will refrain from

including any edge arising from 1X .

We can illustrate the relation between atom states using the Cayley graph Cay(CN). More precisely,

there exists an edge between two atom states a‚ b 2 S(CN) with label t, if it is possible to move the atoms

in a to b using t. It is natural to relate S� to Cay(CN). Namely, any path in Cay(CN) corresponds directly to

an event trace in S�. Hence, where S� encapsulates the ‘‘inputs’’ of the chemical network and S(CN)

contains the possible atom states derived from S�, the Cayley graph Cay(CN) captures how atom states

from S(CN) can be created by event traces.

Example: As an illustrative example, consider the reaction network CN depicted in Figure 3a. For

simplicity, we will use reactions r0 and r1 involved in the so-called formose reaction. We restrict ourselves

to only consider the carbon atoms of all molecules and have labeled them with a corresponding unique id

for easy reference. Here, the underlying set X = f1‚ 2‚ . . . ‚ 8g corresponds to the eight elements labeled

by 1‚ 2‚ . . . ‚ 8 in Figure 3a. From tr(CN), we get four transformations: s1 = [3‚ 4‚ 3‚ 4‚ 5‚ 6‚ 7‚ 8],

s2 = [4‚ 3‚ 3‚ 4‚ 5‚ 6‚ 7‚ 8] (both obtained from r0), and s3 = [5‚ 6‚ 7‚ 8‚ 5‚ 6‚ 7‚ 8], s4 = [5‚ 6‚ 8‚ 7‚

5‚ 6‚ 7‚ 8] (both obtained from r1) with the corresponding alphabet S= fs1‚ s2‚ s3‚ s4g. For a reaction,

the corresponding transformation(s) maps the atoms of the educt molecules to the atoms of the product

molecules, whereas all other atoms are mapped with the identity. The transformations describe how

carbon atoms are rearranged into different configurations when an event is fired. s1 and s2 describe how

the carbon atoms of a glycolaldehyde molecule are arranged in the molecule p0‚ 0 when transformed via

the reaction r0. In the case of s1, we observe that the carbons are rearranged such that s1(1) = 3 and

s1(2) = 4. Of course, due to the symmetries in the molecule p0‚ 0, reaction r0 also results in the mirrored

transformation of s1, that is, s2(1) = 4 and s2(2) = 3. The characteristic monoid of CN, S(CN), has an order

of 9. We illustrate the movement of atoms in CN by its Cayley graph Cay(CN), which is depicted in

Figure 3b. Any path originating from the identity element corresponds to an event trace, for example, we

can track the atoms 1 and 2 through the event trace s1s3 as the corresponding path and realize s1s3(1) = 8

and s1s3(2) = 7. Assume now that we were only interested in tracking the carbon atoms found in the

glycolaldehyde molecule. To this end, we can examine O(�z‚S(CN)), which contains six elements,

meaning that there exist six unique atom states for the atoms in a glycolaldehyde molecule. Again, we can

study these movements using the projected Cayley graph PCay(CN‚ (1‚ 2)). The resulting graph is depicted

in Figure 4a.
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3.2. Natural subsystems of atom states

In the intersection between group theory and systems biology, attempts to formalize the notion of natural

subsystems and hierarchical relations within such systems have been performed by works such as Nehaniv et al.

(2015). Here, natural subsystems are defined as symmetric structures arising from a biological system. Such

symmetries manifest as permutation groups of the associated semigroup representing said system. In such a

model, the Krohn–Rhodes decomposition or the holonomy decomposition (Egri-Nagy and Nehaniv, 2015) can

be used to construct a hierarchical structure on such natural subsystems of the biological system. In terms of

atom tracking, however, defining natural subsystems in terms of the permutation groups in S(CN) does not

have an immediately useful interpretation. Similarly, the hierarchical structure obtained from methods such as

holonomy decomposition is not intuitive to interpret. Instead, when talking about natural subsystems in terms of

atom tracking, we are interested in systems of reversible event traces, that is, event traces that do not change the

original configuration of atoms. To this end, it is natural to define natural subsystems of S(CN) in terms of

Green’s relations (Clifford and Preston, 1967). For elements s1‚ s2 2 S(CN), we define the reflexive transitive

relation �R as s1�Rs2, if there exists an event trace t 2 S� such that s1t = s2. In addition, we define an

equivalence relation R, where s1 is equivalent to s2, in symbols s1Rs2 whenever s1�Rs2 and s2�Rs1.

Definition 3 (Natural Subsystems): The natural subsystems of S(CN) is the set of equivalence classes

induced by the R-relation.

The equivalence classes correspond to the strongly connected components of the Cayley graph Cay(CN)

(Froidure and Pin, 1997). We note that for a tuple of atoms �z, the natural extension to natural subsystems of

the orbit O(�z‚ S(CN)) is simply the strongly connected components of its projected Cayley graph

PCay(CN‚ �z). The R relation is interesting, as the equivalence classes on S(CN) induced by the R relation

form pools of reversible event traces. More precisely, let s1Rs2 for some s1‚ s2 2 S(CN), where s1 � t12 = s2

and s2 � t21 = s1 for some t12‚ t21 2 S�. Then, the event traces t12 and t21 are reversible, that is, we can re-

obtain s1 as s1t12t21 = s1 and s2 as s2t21t12 = s2. Additionally, the quotient graph of the equivalence classes of

the R relation on the Cayley graph Cay(CN) naturally forms a hierarchical relation on the atom states of

S(CN) that has a useful interpretation from the point of view of chemistry as we will see in Section 4.3.

Example: Again, consider the reaction network obtained from the formose reaction depicted in Figure 3a.

We will include the transformations obtained from reaction r2 in additions to the transformations listed in

Section 3.1: s5 = [1‚ 2‚ 1‚ 2‚ 5‚ 6‚ 7‚ 8] and s6 = [1‚ 2‚ 2‚ 1‚ 5‚ 6‚ 7‚ 8] (both obtained from r2). Assume

that we are interested in determining how carbon atoms of a glycolaldehyde molecule can reconfigure into

different molecules. The projected Cayley graph PCay(CN‚ (1‚ 2)) shows such configurations and is depicted

in Figure 4b. Here, the atom states belonging to the same gray box are strongly connected and hence belong to

the same natural subsystem. For clarity, we have removed edges between atom states in the same subsystem

since any atom state in a subsystem can be transformed into any other state in the same subsystem.

a b

FIG. 4. (a) The projected Cayley graph PCay(CN‚ (1‚ 2)) from the example of Section 3.1. Like for Cay(CN), we

observe that there are only two types of event traces of interest. However, since we are only tracking the atoms of the

glycolaldehyde molecule, some atom states are effectively coalesced compared to Cay(CN). (b) The projected Cayley

graph PCay(CN‚ (1‚ 2)) from the example of Section 3.2. The graph shows the natural subsystems of the carbon atoms

of a glycolaldehyde molecule. Vertices in the same box constitute vertices that are in the same natural subsystem. Note

that edges between vertices in the same natural subsystem are not depicted [e.g., one of the eight hidden edges in the

top-level subsystem is (3‚ 4)! (1‚ 2) with label s5].
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Notably, we observe from Figure 4b that the atoms 1 and 2 in the glycolaldehyde molecule can swap

positions. We could of course also realize that such a swap was possible by noticing the symmetries in the

glycolaldehyde molecule and the fact that we can convert glycolaldehyde to the p0‚ 0 molecule and vice

versa. However, such patterns become immediately obvious from the projected Cayley graph. Finally, we

can derive from Figure 4b that it is only possible to leave the original subsystem by applying transformation

s3 or s4, corresponding to reaction r1.

4. RESULTS

4.1. Implementation

To test the practicality of the structures introduced in the previous section, we implemented the con-

struction of the projected Cayley graph of a set of atoms in a chemical network. The resulting im-

plementation can be found at https://github.com/Nojgaard/cat All code is written in python and uses

the software package MØD (Andersen et al., 2016) and NetworkX (Hagberg et al., 2008) to construct the

chemical networks and find the transformations used for the characteristic monoid. All figures in the

following section were constructed with said implementation, and each run finished within seconds on an

8 core Intel Core i9 CPU with 64 GB memory. The most time-consuming part of the implementation was

the computation of the transformations obtained from each hyperedge in the chemical network. In contrast,

the construction time of the projected Cayley graph proved to be negligible.

4.2. Differentiating pathways

In this section, we will explore the possibilities of using the characteristic monoids of chemical networks

to determine if it is possible to distinguish between two pathways P1 and P2, based on their atom states of

their respective characteristic monoids. The motivation stems from methods such as isotope labeling. Here,

a ‘‘labeled’’ atom is a detectable isotope whose position is known in some initial molecule and can then be

detected, along with its exact position, in the product molecules of some pathway. In contrast to Andersen

et al. (2019), we will not focus on the orbits of atoms in isolation, as we lose the ability to reason about

atom positions in relation to each other. Moreover, as we will see here, the Cayley graph of the chemical

network can be used to identify the exact event two pathways split.

Given a chemical network CN, a pathway P is a set of hyperedges (i.e., reactions) from CN equipped

with a set of input and output molecules. We think of a pathway as a process that consumes a set of input

molecules to construct a set of output molecules, using the reactions specified by P. In our case, a

‘‘labeled’’ atom is a point in S(CN). Given two pathways P1 and P2, we can characterize the possible

movement of atoms as the characteristic monoids S(P1) and S(P2). In practice, it might not be feasible to

track every atom in CN, for example, we are only able to replace a few atoms with its corresponding

detectable isotope, and hence, it becomes useful to consider the orbits O(�z‚ S(P1)) and O(�z‚ S(P2)), where

�z is the atom from the input molecules we can track. Clearly, of the atom states in O(�z‚ S(P1)) and

O(�z‚ S(P2)), we can only expect to observe, for example, in an isotope labeling experiment, the atom states

that locate the tracked atoms in the output molecules. As a result, we arrive at the following observation.

Observation 1: Let Yi � O(�z‚ S(Pi)), i 2 f1‚ 2g, be the atom states we can hope to observe after some

isotope labeling experiment. Then, we can always distinguish between P1 and P2 if Y1 \ Y2 = ;.
Example: Consider the network CN depicted in Figure 5a modeling the creation of product 4-phenyl-6-

aminopyrimidine (denoted P) from the educt 4-(benzyloxy)-6-bromopyrimidine (denoted E) using am-

monia. This well-investigated and widely used substitution mechanism (Addition of the Nucleophile, Ring

Opening, and Ring Closure [ANRORC]) ( Van der Plas, 1978) was proven to nontrivially function via ring

opening and ring closure (and an accompanied carbon replacement) via isotope labeling. Two possible

pathways are modeled: the input molecules for the two pathways are the molecules E, NH3, NH2, whereas

the output is the single molecule P. The first, seemingly correct but wrong, pathway P1 = fr3g converts E

and an NH3 molecule directly into P, by replacing the Br atom with NH2. The second pathway consists of

the reactions P2 = fr0‚ r1‚ r2‚ r4g and models the ANRORC mechanism.

Assume we wanted to device a strategy to decide what pathway is executed in reality. By replacing the

nitrogen atoms of the E molecule with the isotope 13N, we would be able to observe where the atoms are

positioned in the produced P molecule. Since we, by assumption, only label the nitrogen atoms of the E
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molecule, that is, the atoms 3 and 2, we can look at the orbits of the characteristic monoids O((2‚ 3)‚ S(P1))

and O((2‚ 3)‚ S(P2)) with the order of 5 and 2, respectively. We observe that both orbits only contain a

single element locating (2, 3) in the P molecule, namely the element (14, 15) for O((2‚ 3)‚ S(P1)) and

(14‚ 13) for O((2‚ 3)‚ S(P2)). As the possible configurations are different for P1 and P2, it is hence possible

to always identify if the P molecule was created by P1 or P2.

This fact also becomes immediately obvious by looking at the projected Cayley graph PCay(CN‚ (2‚ 3))

depicted in Figure 5b that shows the immediate divergence of atom states of the two pathways.

4.3. Natural subsystems in the TCA cycle

The citric acid cycle, also known as the TCA cycle or the Krebs cycle, is at the heart of many metabolic

systems. The cycle is used by aerobic organisms to release stored energy in the form of ATP by the

oxidation of acetyl-CoA into water and CO2. The details for the TCA cycle can be found in any standard

chemistry text book, for example, Harvey and Ferrier (2010). In Smith and Morowitz (2016), the trajec-

tories of different carbon atoms in the TCA cycle were examined to explain the change of their oxidation

states. It is well known that there is an enzymatic differentiation of the two carboxymethyl groups in citrate,

which requires a rigorous stereochemical modeling of the graph grammar rules used (Andersen et al.,

2017). Ignoring such stereochemical modeling would lead to atom mappings not occurring in nature. We

will provide a formal handle to analyze theoretically possible carbon trajectories using the algebraic

constructs provided in this article. As we will see, such structures provide intuitive interpretations for the

TCA cycle. More precisely, assume that we are interested in answering the following questions: What are

the possible trajectories of the carbons of an oxaloacetate (OAA) molecule within the TCA cycle while (1)

ignoring the enzymatic differentiation of the two carboxymethyl groups in citrate (denoted TCA- ) or (2)

not ignoring (denoted TCA- ). To answer these questions, we will decompose the characteristic monoid of

the TCA cycle into its natural subsystems and examine them using the projected Cayley graph.

In our setting, the TCA cycle is the chemical network CN, depicted in Figure 6, giving rise to trans-

formations of the underlying monoid. The network is made up of 13 reactions; however, some of the

reactions are not shown for simplicity. Of these 13 reactions, 7 of them yield exactly 1 transformation each

while the remaining 6 yield 2 possible transformations each, resulting in a total of 19 transformations

found. The reactions containing multiple transformations are due to automorphisms in molecules such as

citrate and fumarate. When the enzymatic differentiation of the carboxymethyl group in citrate is not

ignored, only 4 of the 13 reactions yield 2 possible transformations, as the carbon traces to and from citrate

are more constrained. In short, while both TCA- and TCA- are modeled by the same network, the

obtained transformations differ. More precisely, jtr(CN)j = 19 wrt. TCA- and jtr(CN)j = 17 wrt. TCA- .

To start the cycle, an acetyl-CoA molecule is condensed with an OAA molecule, executing a cycle of

reactions that ends up regenerating the OAA molecule while expelling two CO2 and water on the way.

When an original atom is expelled from the cycle, we will consider it permanently lost. The carbon atoms

of the OAA molecule that we are interested in tracking are annotated with the IDs 4, 5, 6, and 7. Let

�z = (4‚ 5‚ 6‚ 7). The projected Cayley graph of PCay(CN‚ �z) wrt. TCA- (resp. TCA- ) consists of 213

(resp. 67) vertices. The full Cayley graphs are depicted in Figure 7a and b, respectively. When a carbon

atom leaves the TCA cycle, we denote it by ‘‘_.’’ For example, the atom state ( ‚ 7‚ 6‚ ) should be read as

the original carbon atoms with IDs 4 and 7 has been expelled, whereas the carbon atoms with IDs 5 and 6

are located at the atoms with IDs 7 and 6, respectively.

We can find the natural subsystems of CN as the strongly connected components of PCay(CN‚ �z). In

TCA- (resp. TCA- ), we find 92 (resp. 51) strongly connected components, of which 8 (resp. only 1) are

nontrivial. Any nontrivial strongly connected component must invariably contain at least one tour around

the TCA cycle since this is the only way the original atoms of the OAA molecules can be reused to create

another OAA molecule. Moreover, any nontrivial strongly connected component represents a sequence(s)

of reactions that uses (some of the) original atoms of the OAA molecule. To simplify PCay(CN‚ �z) such

that only the information on carbon traces of the atoms of OAA is depicted, we will construct the simplified

projected Cayley graph, denoted SCay(CN‚ �z), as follows: collapse any vertex in PCay(CN‚ �z) that is part

of a trivial strongly connected component and whose atoms are not located in an OAA molecule. Moreover,

for any nontrivial strongly connected component, hide the edges between atom states in the same strongly

connected component, and finally, only include atom states if the atoms are located in an OAA molecule.

The resulting graphs for TCA- and TCA- are depicted in Figure 8. Each box in the figure represents a
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natural subsystem that contains an atom state where every atom is either expelled or located in an OAA

molecule. When ignoring the stereochemical formation of citrate, ( ‚ 5‚ 6‚ 7) is a grey node in

SCay(CN‚ �z) (i.e., a representative of a strongly connected component PCay(CN‚ �z)), that is, there is a

trajectory where three of the four original carbons of OAA are reused at the same location after a TCA-

cycle turnover. However, in TCA- , only ( ‚ 5‚ ‚ ) is a representative of a strongly connected compo-

nent, that is, only the carbon with ID 5 of OAA can be kept at the same location when a multitude of

TCA- turnovers are executed. If that carbon changes location, it will leave the TCA cycle after exactly

two more turnovers (the natural subsystems reachable from ( ‚ 5‚ ‚ ) do not correspond to strongly

connected components) via positions 5! 6! 4! or via 5! 6! 7! . To the best of our knowl-

edge, such investigations have not been executed formally before.

Interestingly, SCay(CN‚ �z), as depicted in Figure 8c, allows us to closely examine each of the possible

carbon trajectories of TCA- . For example, the fact that the atom state ( ‚ 6‚ 7‚ ) is present in

SCay(CN‚ �z) wrt. TCA- , means that there exists a sequence of reactions that expels the carbons with IDs

4 and 7, but reuses the carbon atoms with IDs 5 and 6 to create a new OAA atom, where 5 is located at

6 and 6 is located at 7. Structurally, the atoms 4 and 7 correspond to the outer atoms in the carbon backbone

in the OAA molecule, whereas the atoms 5 and 6 correspond to the inner atoms in the carbon backbone. In

FIG. 6. A (simplified) chemical network modeling the TCA cycle. Note that any molecules not containing carbon

atoms are modeled, but not depicted here. Each carbon atom is equipped with a unique ID for easy reference. TCA,

tricarboxylic acid.
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other words, the presence of ( ‚ 6‚ 7‚ ) means that there exists a sequence of reactions that expels the

outer atoms of the carbon backbone while recycling the inner atoms.

Figure 8c gives us a rough road map to determine exactly what sequence of events must have taken place

to end up in the atom state ( ‚ 6‚ 7‚ ). We start with the atom state (4‚ 5‚ 6‚ 7) and see there is an edge

directly to ( ‚ 6‚ 7‚ ), meaning that we can expel the two outer atoms in a single cycle. This is, however,

not the only way we can end up with the atom state ( ‚ 6‚ 7‚ ). For example, after one cycle, we can expel

the carbon with ID 4 and end up with the atom state ( ‚ 5‚ 6‚ 7), that is, all other atoms are still in their

original positions. After another cycle, we can end up in the atom state ( ‚ 6‚ 7‚ ) or ( 6‚ 5‚ 4). Note that

( ‚ 5‚ 6‚ 7) is part of a nontrivial strongly connected component, meaning that there exists a sequence of

reactions in the TCA cycle that ends up in the exact same atom state. That is, we expel the carbon atom at

position 4 (which is already expelled) while keeping all other atoms at their original position. In contrast,

the atom state ( ‚ 6‚ 5‚ 4) is part of a trivial strongly connected component, meaning that any sequence of

reaction in the TCA cycle will have to change the atom state.

If any nontrivial strongly connected component in Figure 8c contains more than one vertex, it means that

we can swap between atom states after a tour in the TCA cycle. As an example, consider the atom states

( ‚ 6‚ 5‚ ) and ( ‚ 5‚ 6‚ ) that are both part of the same strongly connected component. The fact that they

are part of the same strongly connected component, means that it is possible to swap the inner atoms of the

carbon backbone during the TCA cycle. If we would be interested in the exact sequence of transformations

that lead to the swap, we simply examine the subgraph of PCay(CN‚ �z) wrt. TCA- corresponding to that

natural subsystem of SCay(CN‚ �z) wrt. TCA- , as illustrated in Figure 9. The figure depicts all possible ways

a

b

c

FIG. 8. (a) The oxaloacetate molecule. The carbon atoms are equipped with IDs 4, 5, 6, and 7. (b) The simplified

projected Cayley graph SCay(CN‚ (4‚ 5‚ 6‚ 7)), when adjusting for stereospecific citrate in tr(CN). (c) The simplified

projected Cayley graph SCay(CN‚ (4‚ 5‚ 6‚ 7)) when not considering stereospecificity.
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to swap the positions of atoms with IDs 5 and 6 as the possible paths between ( ‚ 5‚ 6‚ ) and ( ‚ 6‚ 5‚ ).

Figure 6 shows one such path traversing the TCA cycle without expelling any of the remaining carbon atoms.

5. CONCLUSION

In this work, we have extended the insights provided by Andersen et al. (2019) by showing the natural

relationship between event traces, the characteristic monoid, and its corresponding Cayley graph. The

projected Cayley graph provides valuable insights into local substructures of reversible event traces.

We observe future steps for this approach to branch in at least two directions. On one hand, these

methods show obvious applications in isotopic labeling design. To this end, it is natural to extend the

system to model the actual process of such experiments. For example, when doing isotopic labeling

experiments with mass spectrometry, molecules are broken into fragments and the weight of such frag-

ments is deduced to determine the topology of the fragment. Using our model to track where the atoms

might end up in such fragments and how it affects their weight seems like a natural next step. On the other

hand, a more rigorous investigation of the fundamental properties derived from semigroup theory of the

characteristic monoid seems appealing. As we have shown here, understanding such relations might grant

insights into the nature of the examined system.
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FIG. 9. The strongly connected component of PCay(CN‚ (4‚ 5‚ 6‚ 7)) wrt. TCA- containing the state ( ‚ 6‚ 5‚ )
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